Muharini Kusumawinahyu, Wuryansari
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimized pap-smear image enhancement: hybrid Perona-Malik diffusion filter-CLAHE using spider monkey optimization Khozaimi, Ach; Darti, Isnani; Muharini Kusumawinahyu, Wuryansari; Anam, Syaiful
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2765-2775

Abstract

Pap-smear image quality is crucial for cervical cancer detection. This study introduces an optimized hybrid approach that combines the Perona-Malik diffusion (PMD) filter with contrast-limited adaptive histogram equalization (CLAHE) to enhance pap-smear image quality. The PMD filter reduces the image noise, whereas CLAHE improves the image contrast. The hybrid method was optimized using spider monkey optimization (SMO PMD-CLAHE). Blind/reference-less image spatial quality evaluator (BRISQUE) and contrast enhancement-based image quality (CEIQ) are the new objective functions for the PMD filter and CLAHE optimization, respectively. The simulations were conducted using the SIPaKMeD dataset. The results indicate that SMO outperforms state-of-the-art methods in optimizing the PMD filter and CLAHE. The proposed method achieved an average effective measure of enhancement (EME) of 5.45, root mean square (RMS) contrast of 60.45, Michelson’s contrast (MC) of 0.995, and entropy of 6.80. This approach offers a new perspective for improving pap-smear image quality.
New perspective in enhancing Papanicolaou-smear image using CLAHE and spider monkey optimization Khozaimi, Ach; Muharini Kusumawinahyu, Wuryansari; Darti, Isnani; Anam, Syaiful; Nahdhiyah, Ulfatun
Bulletin of Electrical Engineering and Informatics Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i6.10250

Abstract

High-quality Papanicolaou (Pap) smear images are essential for reliable early detection of cervical cancer, yet low contrast and noise often hinder accurate interpretation. This study introduces spider monkey optimization (SMO)-contrast-limited adaptive histogram equalization (CLAHE), an optimized CLAHE framework guided by the SMO algorithm. A novel signal contrast (SC) objective function is proposed, combining perceptual enhancement contrast enhancement-based image quality (CEIQ) with fidelity preservation peak signal-to-noise ratio (PSNR) to adaptively tune CLAHE parameters. Experiments on the publicly available SIPaKMeD and Mendeley LBC datasets demonstrate that SMO-CLAHE consistently outperforms manual settings and flower pollination algorithm (FPA)-based optimization, and achieves performance comparable to pelican optimization algorithm (POA) across key quality metrics including entropy, structural similarity index (SSIM), PSNR, enhancement measure estimation (EME), root mean square contrast (RMSC), standard deviation (STD-DEV), and CEIQ. Furthermore, downstream evaluation using a MobileNetV3-S classifier shows that the enhanced images lead to improved cervical cancer classification performance. These results highlight SMO-CLAHE as a robust and clinically relevant preprocessing framework, offering a new perspective for Pap smear image enhancement and diagnostic support.