Che Hassan, Mohammad Arif Fahmi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Application of self-organizing map for modeling the Aquilaria malaccensis oil using chemical compound Che Hassan, Mohammad Arif Fahmi; Mohd Yusoff, Zakiah; Ismail, Nurlaila; Taib, Mohd Nasir
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2889-2898

Abstract

Agarwood oil, known as ‘black gold’ or the ‘wood of God,’ is a globally prized essential oil derived naturally from the Aquilaria tree. Despite its significance, the current non-standardized grading system varies worldwide, relying on subjective assessments. This paper addresses the need for a consistent classification model by presenting an overview of Aquilaria malaccensis oil quality using the self-organizing map (SOM) algorithm. Derived from the Thymelaeaceae family, Aquilaria malaccensis is a primary source of agarwood trees in the Malay Archipelago. Agarwood oil extraction involves traditional methods like solvent extraction and hydro-distillation, yielding a complex mixture of chromone derivatives, oxygenated sesquiterpenes, and sesquiterpene hydrocarbons. This study categorizes agarwood oil into high and low grades based on chemical compounds, utilizing the SOM algorithm with inputs of three specific compounds: β-agarofuran, α-agarofuran, and 10-epi-φ-eudesmol. Findings demonstrate the efficacy of SOM-based quality grading in distinguishing agarwood oil grades, offering a significant contribution to the field. The non-standardized grading system's inefficiency and subjectivity underscore the necessity for a standardized model, making this research crucial for the agarwood industry's advancement.