Claim Missing Document
Check
Articles

Found 1 Documents
Search

Sistem Deteksi Kantuk Pengendara Sepeda Motor Ghandy, G; Lareno, Bambang; Surjaningtyas, Pegasus Violin; Wiratman, Daniel; Astono, Filipus Dani
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 10, No 2 (2025): Edisi Agustus
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/jurasik.v10i2.898

Abstract

This study proposes a real-time motorcyclist drowsiness detection system using a camera-based approach to monitor eye blinks and assess rider awareness. The method integrates YOLO V5 for Region of Interest (ROI) extraction and Channel and Spatial Reliability Tracking (CSRT) for precise eye tracking on an inverted Cartesian plane. CSRT, leveraging CSR-DCF (Discriminative Correlation Filter), ensures robust movement detection. Blink frequency and interval analysis determine drowsiness levels, triggering timely alerts to enhance road safety. Designed for embedded deployment, the prototype utilizes a Raspberry Pi 4B, efficiently processing images via the Raspberry Pi Camera Module 2 NoIR. Experimental results confirm the system’s feasibility for real-time drowsiness detection on lightweight hardware, contributing to the advancement of intelligent rider safety technologies.