Claim Missing Document
Check
Articles

Found 2 Documents
Search

COMPARISON OF B-SPLINE AND TRUNCATED SPLINE REGRESSION MODELS FOR TEMPERATURE FORECAST Handajani, Sri Sulistijowati; Pratiwi, Hasih; Respatiwulan, Respatiwulan; Qona’ah, Niswatul; Ramadhania, Monica; Evitasi, Niken; Apsari, Nindya Eka
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 4 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss4pp1969-1984

Abstract

The spline regression model is a nonparametric model and it is applied to data that do not have a certain curve shape and do not have information about it. In this study, the results of the analysis of the B-Spline regression model and the Spline Truncated model were compared on temperature data at several stations on Java Island to obtain the best model that can be used to forecast the temperature for the next few days. Daily temperature data were obtained from BMKG at Semarang, Juanda, Serang, Sleman, Bandung, and Kemayoran stations. The temperature data were modeled with the B-Spline and Spline Truncated regression using the optimal knot point of the GCV, and the best model was obtained. The analysis shows that the B-Spline regression models are better than the truncated Spline models with a fairly small MSE value and a greater coefficient of determination than the truncated Spline model.
Modeling and Forecasting Volatility in USD/GBP Exchange Rate Qona’ah, Niswatul
Enthusiastic : International Journal of Applied Statistics and Data Science Volume 3 Issue 2, October 2023
Publisher : Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/enthusiastic.vol3.iss2.art2

Abstract

Rate changes can occur hourly, daily, or in large incremental shifts. These changes may impact firms by changing the cost of commodities imported from other countries and the demand for their goods among foreign consumers. Therefore, it is essential to forecast exchange rates to manage this business effect. This study aims to determine the best model for predicting volatility in the exchange rate between USD and GBP. In particular, we analyze exchange rates using the Autoregressive Integrated Moving Average (ARIMA) model and the volatility or variance model by Generalized Autoregressive Conditional Heteroscedasticity (GARCH). To determine the best model, the performance of each model is evaluated with several criteria, namely Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The results show that EGARCH(1,1) has the best forecasting performance in the out-sample section because it can better capture out-sample data patterns with minimum RMSE, MAE, and MAPE.