Claim Missing Document
Check
Articles

Found 2 Documents
Search

COMPARISON OF LOCAL POLYNOMIAL REGRESSION AND ARIMA IN PREDICTING THE NUMBER OF FOREIGN TOURIST VISITS TO INDONESIA Pratama, Bagas Shata; Suryono, Alda Fuadiyah; Auliyah, Nina; Chamidah, Nur
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 1 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss1pp0043-0052

Abstract

Indonesia is a country that has a variety of exotic tourist destinations and can attract tourists to visit. Currently, tourism is one of the sectors that plays a major role in driving the Indonesian economy. Various tourists, both domestic and foreign, are expected to continue to increase in number every year. Therefore, appropriate policies are needed from the government to develop the tourism sector so that it can be even better over time. This research aims to predict the number of foreign tourist visits to Indonesia using the Autoregressive Integrated Moving Average (ARIMA) model and local polynomial regression. The data used in this research is the number of foreign tourist visits per month from January 2017 to December 2022 obtained from the the Kemenparekraf website. This data is fluctuating so that the method a local polynomial approach is appropriate for this study. The data analysis method used are local polynomial regression and ARIMA model. In the ARIMA model there are assumptions that must be met. In this study, the ARIMA model obtained has met the assumption of residual normality but does not meet the assumption of homoscedasticity so that ARIMA modeling cannot be continued and analysis is only carried out with local polynomial regression. The result of this study is a prediction of future tourist visits. The MAPE value of the local polynomial regression approach is 1.43% which is categorized as a prediction with high accuracy because the value is less than 10%. Thus, the local polynomial regression approach is very well used to predict the number of foreign tourist visits to Indonesia.
COMPARISON OF POISSON REGRESSION AND GENERALIZED POISSON REGRESSION IN MODELING THE NUMBER OF INFANT MORTALITY IN WEST JAVA 2022 Saifudin, Toha; Salsabila, Fatiha Nadia; Fitriani, Mubadi'ul; Kholidiyah, Azizatul; Auliyah, Nina; Ariani, Fildzah Tri Januar; Suliyanto, Suliyanto
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 1 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss1pp35-50

Abstract

In line with the Sustainable Development Goals (SDGs), the Infant Mortality Rate (AKB) is a very important health indicator, especially in neonatal and perinatal care. West Java Province consistently ranks third nationally in terms of infant mortality in 2020 and 2021. This study analyzes the factors influencing infant mortality in West Java in 2022 using secondary data from the 2022 West Java Provincial Health Profile. The response variable is the number of infant deaths, while the predictor variables include the percentage of K-4 coverage (X1), high-risk pregnancy (X2), family with PHBS (X3), exclusive breastfeeding (X4), and complete immunization coverage (X5). Given the count-based nature of the data, Poisson regression was used, which assumes equidispersion where the variance is equal to the mean. However, the analysis found overdispersion, where the variance significantly exceeds the mean, making Poisson regression unsuitable. To address this, Generalized Poisson Regression (GPR) was applied, as GPR introduces a dispersion parameter that accounts for overdispersion, thus better fitting the data. The initial Poisson regression results showed that X1, X2, X4, and X5 significantly influenced infant mortality, while the GPR model showed that only X2 and X3 were significant factors, with a dispersion parameter of -3.116. The GPR model shows that every additional one high-risk pregnancy increases the infant mortality rate by 1.00006, while an increase of one unit of clean and healthy living practices reduces the mortality rate by 2.66%. Model evaluation using AIC, BIC, and RMSE confirmed that the GPR model better described the relationship between predictor variables and infant mortality rates compared to Poisson regression. These findings emphasize the need to use GPR to model cases with overdispersion in count data, so as to provide more reliable information for policy and intervention strategies.