Khairani, Sabila
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Application of Geographically Weighted Panel Regression (GWPR) on Tuberculosis Disease in North Sumatra Province Khairani, Sabila; Aprilia, Rima
Mathline : Jurnal Matematika dan Pendidikan Matematika Vol. 10 No. 3 (2025): Mathline : Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas Wiralodra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31943/mathline.v10i3.996

Abstract

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis and remains a serious health problem in Indonesia, particularly in North Sumatra Province. The increase in the number of cases from 2021 to 2023 indicates the need for an analytical approach that simultaneously considers spatial and temporal aspects. This study aims to apply the Geographically Weighted Panel Regression (GWPR) method to analyze the development of tuberculosis and identify the factors that significantly contribute to its spread in 33 regencies/cities in North Sumatra. Based on the results of the Chow and Hausman tests, it was found that the Fixed Effect Model (FEM) is the most suitable panel data approach to use before applying the GWPR model. The analysis shows that the three variables that most significantly influence the number of tuberculosis cases spatially are the population size, gender (male), and age ≥14 years. The application of GWPR with adaptive bisquare weighting resulted in the best model with an AIC value of 1141.567 and a coefficient of determination (R²) of 0.99578, indicating that GWPR is a highly effective approach for analyzing the spatial spread of infectious diseases such as tuberculosis. The GWPR model is able to explain the spread of tuberculosis more accurately compared to FEM because GWPR can capture the varying influence of each variable in each region, whereas FEM only produces a single coefficient value that applies to the entire area without considering the existing spatial variations.
Analisis Diskriminan untuk Mengetahui Faktor yang Mempengaruhi Pilihan Peminatan pada Program Studi Matematika Di UINSU Clara, Nur Cellia; Hasibuan, Hani Maulida; Ayunda, Afrila; Khairani, Sabila; Cipta, Hendra
JURNAL JENDELA MATEMATIKA Vol. 3 No. 02 (2025): Jurnal Jendela Matematika: Edisi Juli 2025
Publisher : CV. Jendela Edukasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57008/jjm.v3i02.1706

Abstract

Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang memengaruhi pemilihan peminatan mahasiswa pada Program Studi Matematika di Universitas Islam Negeri Sumatera Utara (UINSU). Terdapat dua peminatan yang ditawarkan, yaitu Statistika dan Operasi Riset. Data diperoleh dari 84 mahasiswa yang terbagi dalam dua kelompok peminatan, dan dianalisis menggunakan metode analisis diskriminan. Hasil analisis menunjukkan bahwa variabel minat dan bakat serta peluang kerja memiliki pengaruh signifikan terhadap keputusan peminatan, sedangkan lingkungan sosial tidak memberikan pengaruh yang berarti. Fungsi diskriminan yang dibentuk mampu mengklasifikasikan peminatan mahasiswa dengan tingkat akurasi sebesar 76,2%. Temuan ini menekankan pentingnya pengenalan minat pribadi dan prospek karier dalam proses bimbingan akademik mahasiswa.