News refers to stories or information about current events or incidents. Several news websites offer a service called RSS (Really Simple Syndication), which enables users to easily receive updates on the latest news. News RSS feeds are typically generated based on the order of publication time or general categories. The content of these news RSS feeds can be customized to align with user interests or preferences. A recommendation system can be utilized as an approach to customize RSS feeds. This study was conducted to design a system capable of generating RSS feeds based on news recommendations using the content-based TF-IDF method and cosine similarity. Data scraping and preprocessing of news articles from various RSS feeds of Indonesian news websites were automated using cron jobs. Content-based filtering modeling was carried out using TF-IDF and cosine similarity. The design and customization of RSS feeds were implemented in a Flask application and packaged within several endpoints. The recommendations generated based on user click interactions were reasonably relevant, as they successfully presented news titles similar to the clicked articles, with cosine similarity scores ranging from 0.2 to 1.0. The majority of respondents agreed that the recommended news articles were relevant to the articles they had clicked and aligned with their interests. The RSS feed evaluation yielded highly satisfactory results, with all aspects assessed in the user acceptance survey achieving an average score exceeding 80%, and the overall results of the customer satisfaction survey indicated scores starting from 90%.