Claim Missing Document
Check
Articles

Found 1 Documents
Search

Predictive Data Analytics for Fault Diagnosis and Energy Optimization in Industrial IoT Environments Fallah, Dina; Abdul-Kareem, Bushra Jabbar; Murad, Nada Mohammed; Mahdi, Ammar Falih; Janan, Ola; Maidin, Siti Sarah
International Journal of Engineering, Science and Information Technology Vol 5, No 2 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i2.1392

Abstract

The fusion of predictive maintenance with energy optimization represents a critical advance for intelligent Industrial Internet of Things (IIoT) systems. In response to the growing industrial demand for highly reliable and efficient operations, this study introduces and validates a unified framework that couples fault diagnosis via deep learning with energy management via reinforcement learning. We utilize a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) architecture for multivariate fault detection, which demonstrates superior classification accuracy and robustness against data incompleteness. Simultaneously, a Deep Q-Network (DQN) performs dynamic energy scheduling based on predicted system health, achieving substantial energy reductions without compromising task deadlines. Extensive experimental results from real-world industrial datasets and simulations confirm the integrated framework's superiority over conventional approaches in both diagnostic precision and energy efficiency. Key performance indicators, including inference speed and cross-validation, affirm its suitability for real-time industrial applications. This work demonstrates that integrating predictive analytics into intelligent control paradigms is crucial for improving the reliability and sustainability of modern IIoT systems and offers a replicable blueprint for developing next-generation smart manufacturing solutions.