Diabetes Melitus (DM) adalah penyakit kronis yang ditandai dengan peningkatan kadar glukosa darah akibat gangguan produksi atau fungsi insulin. Secara global, prevalensi DM terus meningkat, dengan sekitar 537 juta penderita pada tahun 2021 dan proyeksi mencapai 783 juta pada tahun 2045 jika tidak ada penanganan yang lebih efektif. Deteksi dini penyakit ini sangat penating untuk mencegah komplikasi yang lebih serius. Namun, diagnosis manual konvensional sering kali memakan waktu dan biaya yang besar, sehingga menghambat upaya tersebut. Penelitian ini bertujuan mengembangkan model prediksi risiko diabetes yang efisien dan mudah diakses menggunakan metode ensemble weighted voting. Pendekatan ini mengombinasikan tiga algoritma machine learning, yaitu Logistic Regression, Support Vector Machine, dan Random Forest. Data yang digunakan berasal dari survei publik "Diabetes Health Indicators Dataset" (BRFSS 2021) serta data primer lokal. Metodologi penelitian mencakup pengumpulan data, pra-pemrosesan, pelatihan model individual, dan pembentukan model ensemble dengan pembobotan berdasarkan akurasi model. Kinerja model dievaluasi menggunakan metrik akurasi, presisi, recall, dan F1-score melalui empat skenario pengujian. Hasil menunjukkan bahwa model ensemble weighted voting memberikan kinerja yang baik dengan akurasi tertinggi 90,00% pada skenario yang memadukan data latih terbatas dan data uji lokal. Penelitian ini menyimpulkan bahwa metode ensemble weighted voting merupakan metode yang cukup baik untuk pengembangan model prediksi risiko diabetes yang lebih akurast dan praktis