Claim Missing Document
Check
Articles

Found 1 Documents
Search

Improving Diabetes Prediction Using Feedforward Neural Network with Adam Optimization and SMOTE Technique Wijaya Kusuma, Arizha; Mazdadi, Muhammad Itqan; Kartini, Dwi; Farmadi, Andi; Indriani, Fatma; P., Chandrasekaran
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 3 (2025): August
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v7i3.127

Abstract

Diabetes mellitus is a chronic metabolic disorder that demands early and accurate detection to prevent life-threatening complications. Traditional diagnostic procedures, such as blood glucose tests and oral glucose tolerance tests, are often invasive, time-consuming, and resource-intensive, making them less practical for widespread screening. This study aims to explore the potential of artificial intelligence, specifically Feedforward Neural Networks (FNN), in predicting diabetes based on clinical data from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The main contribution of this research lies in the application of the Adaptive Moment Estimation (Adam) optimization algorithm and the Synthetic Minority Oversampling Technique (SMOTE) to enhance the performance and generalization of the FNN on imbalanced medical datasets. The methodology involves preprocessing steps such as imputing zero values with feature means, normalizing input features using Min-Max scaling, and applying SMOTE to balance class distribution. Two model configurations were compared: a baseline FNN trained manually using full-batch gradient descent and a second FNN optimized using Adam. Experimental results demonstrated that the baseline model achieved an accuracy of 70.13%, precision of 56.06%, recall of 68.52%, and F1-score of 61.67%, while the Adam-optimized model achieved superior results with an average accuracy of 73.31%, precision of 60.97%, recall of 66.67%, and F1-score of 63.64% across ten independent runs. These findings indicate that combining adaptive optimization with oversampling significantly enhances the robustness and reliability of neural networks for medical classification tasks. In conclusion, the proposed method provides an effective framework for AI-assisted early diabetes detection and opens pathways for future development using deeper network architectures and explainable AI models for clinical applications.