Claim Missing Document
Check
Articles

Found 1 Documents
Search

Process Capability Analysis of OPC Cement Production Using Statistical Process Control and IMR Method: Blaine Test Evaluation Alya Aufa, Wafiq; Yenni Kurniawati; Admi Salma; Darwas
UNP Journal of Statistics and Data Science Vol. 3 No. 3 (2025): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol3-iss3/379

Abstract

The main challenge in cement production at PT Semen Padang is maintaining consistent product quality, particularly the fineness of cement particles measured by the Blaine test. Variations in raw materials and the production process can cause fluctuations in quality, which affect the performance of the final product. Therefore, it is crucial to monitor and control process stability and capability to consistently meet product specifications. Based on the Statistical Process Control (SPC) analysis using Individuals and Moving Range (I-MR) control charts on 28 observations of Ordinary Portland Cement (OPC) Blaine values from February 2025, one out-of-control point was detected on the Moving Range chart between observations 16 and 17, indicating a significant variation. However, all points on the Individuals chart remained within control limits, suggesting that the individual process values were still under control. After revising the outlier data, the process was confirmed stable. Process capability analysis showed a Cp value of 2.17 and a Cpk value of 1.98, indicating that the production process is not only statistically stable but also highly capable of meeting quality specifications. Therefore, despite some variation between data points, the cement production process at PT Semen Padang can be considered stable and capable. Nevertheless, periodic evaluations are recommended to maintain consistent product quality and provide strategic recommendations for the Quality Assurance division in implementing data-driven quality control.