Claim Missing Document
Check
Articles

Found 2 Documents
Search

Frequent Pattern Mining for Cyberattack Detection Using FP-Growth on Network Traffic Logs Hamsar, Ali; Maulana, Fajar; Hendra, Yomei; Nasyuha, Asyahri Hadi; Aly, Moustafa H
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 4 (2025): Articles Research October 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i4.15221

Abstract

Cybersecurity threats have become increasingly complex, coordinated, and adaptive, creating significant challenges for traditional intrusion detection systems (IDS) that rely on static, signature-based mechanisms. These systems often fail to recognize novel, evolving, or multi-vector attacks that do not match predefined patterns. To overcome these limitations, this study proposes a data-driven framework that applies the Frequent Pattern Growth (FP-Growth) algorithm to analyze co-occurring events within network traffic logs. Using the CIC-IDS2017 benchmark dataset, which includes a wide range of real-world attack scenarios, network events were preprocessed and transformed into transactional data. This transformation enabled the efficient extraction of frequent itemsets and association rules without the computational burden of candidate generation. The experimental results show that the proposed method effectively uncovers meaningful attack correlations, such as brute force attempts preceding privilege escalation or malware infections leading to large-scale DDoS attacks. The model achieved a precision of 77.27%, recall of 70.83%, and F1-score of 73.91%, confirming its reliability in detecting sophisticated attack chains. A heatmap visualization was also generated to improve interpretability, allowing security analysts to quickly identify critical attack relationships. In conclusion, this research demonstrates that FP-Growth provides a scalable, interpretable, and computationally efficient approach to cyberattack detection, with potential integration into real-time IDS environments. Future work will focus on temporal sequence mining and hybrid models combining FP-Growth with machine learning to enhance adaptive, context-aware threat detection.
Pendidikan Literasi Digital untuk Menguatkan Kesadaran Keamanan Data pada Masyarakat Pedesaan di Desa Tobek Godang Hamsar, Ali; Nasyuha, Asyahri Hadi
Jurnal IPTEK Bagi Masyarakat Vol 5 No 1 (2025)
Publisher : Ali Institute of Research and Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55537/j-ibm.v5i1.1306

Abstract

Desa Tobek Godang di Binawidya tengah mengalami transformasi digital dalam bidang administrasi desa, pemasaran produk UMKM, dan komunikasi melalui media sosial. Namun, keterbatasan literasi digital masyarakat, khususnya terkait keamanan data, menimbulkan kerentanan terhadap pencurian identitas, penyalahgunaan informasi, serta serangan siber. Kondisi ini menunjukkan pentingnya intervensi pendidikan yang berfokus pada peningkatan kesadaran dan keterampilan perlindungan data. Program ini bertujuan memperkuat kapasitas masyarakat dalam menghadapi ancaman digital dengan menekankan praktik perlindungan informasi yang sederhana namun efektif. Pelaksanaan program dilakukan selama tiga bulan, melibatkan 50 peserta yang terdiri dari aparat desa dan pelaku UMKM. Metode yang digunakan mencakup observasi awal, lokakarya interaktif, simulasi praktik keamanan digital, dan pendampingan intensif. Evaluasi dilakukan melalui pre-test dan post-test untuk mengukur peningkatan pemahaman. Hasil menunjukkan adanya peningkatan rata-rata pengetahuan keamanan digital sebesar 45%, dengan 82% peserta berhasil mempraktikkan penggunaan kata sandi yang kuat, pemasangan perangkat lunak keamanan, serta penerapan perilaku daring yang lebih bijak.Program ini juga menghasilkan luaran nyata berupa modul pelatihan, manual teknis, serta video edukasi yang dapat digunakan secara berkelanjutan. Kesimpulannya, pendekatan berbasis pelatihan partisipatif terbukti efektif meningkatkan literasi keamanan digital masyarakat desa. Direkomendasikan agar model ini diadaptasi oleh desa lain sebagai upaya sistematis untuk memperkuat ketahanan komunitas di era digital.