Claim Missing Document
Check
Articles

Found 2 Documents
Search

Sustainable Lithium Battery Development in Indonesia: The Role of Natural Materials and Recycling Processes in Future Challenges Latif, Chaironi; Yogianto, Mohammad Fahmi Ilmi; Hafidz, Isa; Adziimaa, Ahmad Fauzan
Journal of Energy, Material, and Instrumentation Technology Vol 6 No 3 (2025): Journal of Energy, Material, and Instrumentation Technology
Publisher : Departement of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jemit.347

Abstract

The development of sustainable lithium-ion batteries is essential to meet the global demand for efficient, high-capacity, and environmentally friendly energy storage systems. This study reviews recent advancements in lithium battery technologies in Indonesia, emphasizing the utilization and performance of locally available natural materials. Among various lithium-ion battery types, those based on Lithium Nickel Manganese Cobalt Oxide (NMC) and Lithium Iron Phosphate (LFP) are considered the most promising for Indonesia due to the availability of key raw materials such as nickel, cobalt, and iron. Additionally, various battery recycling techniques—including pyrometallurgy, hydrometallurgy, bio-hydrometallurgy, and direct recycling methods—are systematically analyzed for their effectiveness in material recovery and environmental impact mitigation. The findings highlight the need for integrated strategies that combine local material utilization, innovation in battery materials and recycling technologies, environmental stewardship, and supportive regulatory frameworks to accelerate the development of a sustainable lithium-ion battery ecosystem in Indonesia.
Exponential-Offset Modelling and XRD Correlation of SOH Degradation in LiFePO4 Batteries under Extreme Loading Latif, Chaironi; Maulana, Tubagus Adam Jody; Yogianto, Mohammad Fahmi Ilmi; Adziimaa, Ahmad Fauzan
Journal of Energy, Material, and Instrumentation Technology Vol 6 No 4 (2025): Journal of Energy, Material, and Instrumentation Technology (In Press)
Publisher : Departement of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jemit.379

Abstract

Understanding the relationship between electrochemical degradation and structural changes is critical for improving the reliability of lithium-ion batteries. In this study, the state of health (SOH) of 18650-type lithium iron phosphate (LiFePO4, LFP) cells was evaluated under extreme loading using discharge resistances of 2.5 Ω and 0.005 Ω. The SOH decreased sharply after the first cycle and then declined more gradually, and the degradation trend was well described by an exponential-offset model with RMSE = 2.87, MAE = 2.25, and R2 = 0.90. Structural analysis was performed by X-ray diffraction (XRD) on electrode samples taken after one discharge at 2.5 Ω (L1), 100 discharges at 2.5 Ω (L100), and one discharge at 0.005 Ω (LD). The XRD results confirmed that the main phase was graphite, but with reduced peak intensities, peak broadening, and increased background noise, indicating crystallinity loss and partial amorphization. These findings demonstrate that SOH degradation is strongly correlated with the decline in crystallinity, and that extreme loading can trigger significant structural deterioration even within a single discharge.