Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimizing The XGBoost Model with Grid Search Hyperparameter Tuning for Maximum Temperature Forecasting Sugiarto, Sugiarto; Mas Diyasa, I Gede Susrama; Alhamda, Denisa Septalian; Aryananda, Rangga Laksana; Fatmah Sari, Allan Ruhui; Sukri, Hanifudin; Dewi, Deshinta Arrowa
Journal of Applied Data Sciences Vol 6, No 4: December 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i4.885

Abstract

This study presents a novel comparative approach to maximum temperature forecasting in Surabaya, Indonesia, by integrating Extreme Gradient Boosting (XGBoost) with Grid Search Hyperparameter Tuning and benchmarking it against Autoregressive Integrated Moving Average (ARIMA) and Neural Prophet models. The main idea is to evaluate the capability of XGBoost in capturing nonlinear patterns in environmental time series data, which traditional models often fail to address. Using 15,388 historical daily maximum temperature records from the BMKG Juanda weather station spanning 1981–2022, the objective is to identify the most accurate predictive model for short- and medium-term forecasts. The modeling process involved four stages: data acquisition, preprocessing, training, and evaluation, with performance assessed using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The findings show that, after hyperparameter tuning, XGBoost achieved the best performance with MAE = 0.32 and RMSE = 0.65, outperforming ARIMA (MAE = 0.85, RMSE = 1.20) and Neural Prophet (MAE = 0.70, RMSE = 0.98). Prediction results for 2025 indicate peak maximum temperatures in January, October, and November, aligning with recent climate patterns. The contribution of this research lies in demonstrating the superiority of a tuned XGBoost model for complex environmental datasets, offering a practical tool for urban climate planning, agricultural scheduling, and heatwave risk mitigation. The novelty of this work is the systematic integration of Grid Search-based optimization with XGBoost for meteorological forecasting in a tropical urban context, producing higher accuracy than both classical statistical and modern hybrid time series methods. These results highlight the model’s adaptability and potential for broader climate-related applications, with future research recommended to incorporate additional meteorological variables such as humidity and wind speed for even greater predictive capability.
A Gaussian Naive Bayes and SMOTE-Based Approach for Predicting Breast Cancer Aggressiveness in Imbalanced Datasets Dewi, Deshinta Arrowa; Kurniawan, Tri Basuki
International Journal of Informatics and Information Systems Vol 8, No 1: January 2025
Publisher : International Journal of Informatics and Information Systems

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/ijiis.v8i1.250

Abstract

Breast cancer remains one of the leading causes of death among women worldwide, making early and accurate detection essential to improving patient outcomes. This study aims to develop a predictive model for breast cancer aggressiveness using the Gaussian Naive Bayes algorithm on the Breast Cancer Wisconsin Diagnostic Dataset. The dataset contains 569 instances with 30 numerical features representing various cell characteristics. Preprocessing steps included data cleaning, label encoding, and Min-Max normalization. The model was evaluated using accuracy, precision, recall, F1-score, and a confusion matrix. Initially, the model achieved an accuracy of 78.88%; however, the recall for malignant cases was relatively low at 45.5%, highlighting a critical limitation in detecting aggressive cancer. To address class imbalance and improve model sensitivity, the Synthetic Minority Oversampling Technique (SMOTE) was applied. While detailed post-SMOTE metrics were not reported in this version, the approach is expected to enhance recall and F1-score for the malignant class. This research demonstrates the potential of Gaussian Naive Bayes, combined with data balancing techniques, as a fast and interpretable tool for early breast cancer diagnosis. Future work will focus on model comparison, cross-validation, and statistical evaluation to improve robustness and reliability.