Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing Sustainable Biogas Generation Through a Real-Time Digital Twin of a Modular Bioreactor Amirkhanov, Bauyrzhan; Kunelbayev, Murat; Issa, Sabina; Amirkhanova, Gulshat; Nurgazy, Tomiris; Zhumasheva, Ainur; Alipbeki, Ongarbek
Journal of Applied Data Sciences Vol 6, No 4: December 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i4.779

Abstract

This article presents the design and research of a modular horizontal tubular bioreactor for efficient biogas production based on anaerobic digestion technology. The study combines a digital twin implemented in the MATLAB/Simulink environment with a physical bioreactor equipped with a sensor and control system. The developed mathematical model describes the biochemical processes of acidogenesis and methanogenesis, the thermal regime and the sensitivity of the system to key parameters. Numerical modeling and visualization methods were used for the analysis. The experiments were carried out for 30 days at a mesophilic temperature of 37 ° C, repeated three times to increase reliability. The raw material used was a mixture of cattle manure and food waste in a 3:1 ratio, with a total volume of 60 liters. Readings from temperature, pH, and methane sensors were taken every 10 minutes. Experimental data confirmed the high efficiency of the design: removal of up to 70.5% of volatile substances and methane yield of up to 80.5%. Predictive analysis has shown that the digital twin is able to predict the behavior of the system and apply corrective actions in real time. The novelty of the work lies in the integration of a digital twin with a physical bioreactor in real time through industrial communication protocols.
Digital twins and IIoT: comparison of Prometheus and InfluxDB Amirkhanov, Bauyrzhan; Ishmurzin, Timur; Kunelbayev, Murat; Amirkhanova, Gulshat; Aidynuly, Azim; Tyulepberdinova, Gulnur
Bulletin of Electrical Engineering and Informatics Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i5.9687

Abstract

This article presents a comparative analysis of data monitoring and visualization tools—Prometheus and InfluxDB—in the context of digital twins (DTs) applied to industrial settings. DTs optimize production processes using industrial internet of things (IIoT) technologies. Mathematical models assessed the tools based on response time, resource consumption, throughput, and reliability. Prometheus is better suited for high-frequency monitoring, achieving a response time of 0.01 seconds and processing up to 10,000 metrics per second—10–15% better than InfluxDB. It consumes 1.5 times less memory (100 MB versus 150 MB), making it faster and more resource-efficient. Conversely, InfluxDB excels in long-term storage and analytics, handling up to 8,000 metrics per second with a response time of 0.09 seconds. However, it requires more resources, including higher CPU usage (20% versus 15%). Both tools integrate seamlessly with Grafana for visualization, offering flexibility for real-time monitoring and decision-making. The study provides actionable insights for selecting monitoring systems based on project-specific requirements, highlighting Prometheus’s efficiency in dynamic scenarios and InfluxDB’s strength in analytics-focused tasks.