Arjunan, Thiruneelakandan
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Five-Tier BI architecture with tuned decision trees for e-commerce prediction Arjunan, Thiruneelakandan; A., Umamageswari
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i3.pp1633-1641

Abstract

In recent times, remarkable performance has been shown by large language models (LLMs) in a range of natural language processing (NLP) such as questioning, responding, document production, and translating languages. In today's competitive business landscape, understanding consumer behaviour in online buying is crucial for the success of e-commerce platforms. The work proposes a novel Five-Tier service-oriented BI architecture (FSOBIA) that leverages advanced tuned decision tree (ATDT) techniques for predicting online buying behaviour. The proposed FSOBIA offers e-commerce platforms a scalable and adaptable solution for gaining insights into consumer preferences and making informed business decisions. The goal of FSOBIA's design and implementation is to meet the needs of evolving users and quicker service. Experimental evaluations on real-world datasets in FSOBIA achieved over 95% prediction accuracy, outperforming traditional models: Decision trees (82%), and XGBoost (91%), while offering better scalability and computational efficiency.