Claim Missing Document
Check
Articles

Found 3 Documents
Search

LITERASI DIGITAL DAN PEMBUATAN APLIKASI ASPIRASI UNTUK FORUM ANAK DESA PEJENGKOLAN Maarif, Vadlya; Syukron, Akhmad; Kiswati, Sri; Anajib, Barra Rifki; Putranto, Restu Ardi; Pramono, Dhorifa Habibie Yute; Anggita, Christina Yuli
Jurnal Abdi Insani Vol 12 No 9 (2025): Jurnal Abdi Insani
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/abdiinsani.v12i9.2923

Abstract

This community service activity was motivated by the low level of digital literacy and limited participation of children in village development, especially in rural areas such as Pejengkolan Village. The aim of this activity is to improve the digital literacy of children and adolescents and to provide a digital aspiration platform to encourage their involvement in village development. The program was carried out in three main stages: partner engagement through focus group discussions (FGD) and surveys, implementation of training and application development, and evaluation through pre-test and post-test. The results showed a significant increase in understanding among children and parents regarding digital literacy, personal data security, and safe internet usage. Additionally, the Pejengkolan Village Children's Forum now has a digital platform in the form of a website (https://forumanakpejengkolan.web.id/) that serves as a medium for expressing aspirations and documenting their activities. The evaluation through pre-test and post-test demonstrated an increase in knowledge by 80–90% on several key indicators such as digital ethics, personal data protection, and digital footprints. This activity made a tangible contribution to shaping a digitally literate, ethical, and actively engaged young generation in village development
Pelatihan Digitalisasi UMKM di Desa Burikan dengan Memanfaatkan Aplikasi Shopee Putranto, Restu Ardi; Ramadhani, Shandy Aulia; Saputra, Evapras Kurniawan Panji; Anggita, Christina Yuli; Saputri, Tania Fadilla
Jurnal Abdimas Ekonomi dan Bisnis Vol. 5 No. 2 (2025): Jurnal Abdimas Ekonomi dan Bisnis
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/abdiekbis.v5i2.8668

Abstract

BSI Explore merupakan kegiatan rutin dua tahunan yang diselenggarakan oleh Universitas Bina Sarana Informatika sebagai bentuk pengabdian kepada masyarakat. Pada pelaksanaan BSI Explore 2025 di Desa Burikan, ditemukan bahwa sebagian besar UMKM masih menggunakan metode pemasaran konvensional seperti penjualan di warung depan rumah, dari rumah ke rumah, atau melalui pasar tradisional, yang dinilai kurang efektif dalam menjangkau pasar yang lebih luas. Oleh karena itu, Tim 10 BSI Explore 2025 mengadakan pelatihan digitalisasi UMKM dengan tema “UMKM Naik Kelas dengan Digitalisasi” yang berfokus pada pemanfaatan aplikasi Shopee. Metode pelaksanaan kegiatan meliputi observasi, wawancara, ceramah, sesi tanya jawab, dan pengisian kuesioner. Kegiatan ini diikuti oleh 18 pelaku UMKM yang bergerak di bidang produksi keset, telur asin, tenun, dan makanan ringan. Hasil kegiatan menunjukkan peningkatan pemahaman peserta terhadap penggunaan platform digital, khususnya Shopee, dalam memasarkan produk mereka. Kegiatan ini diharapkan dapat menjadi langkah awal dalam meningkatkan daya saing UMKM di Desa Burikan.
Implementasi Support Vector Machine dan Resampling dalam Analisis Ulasan Pengguna Google Maps Khultsum, Umi; Rahmawati, Eka; Rahmawati, Annida; Annajib, Barra Rifki; Anggita, Christina Yuli
Jurnal Komtika (Komputasi dan Informatika) Vol 9 No 2 (2025)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/komtika.v9i2.14813

Abstract

The development of information technology has driven the increasing use of digital services such as Google Maps, which functions not only as a navigation tool but also as a platform for users to provide reviews. These reviews serve as an important data source for sentiment analysis; however, they are often unstructured and contain noise. This study aims to conduct sentiment analysis using the Support Vector Machine (SVM) model with the application of resampling techniques to address data imbalance issues in user reviews of the Google Maps application. A total of 1,000 recent reviews were collected through a scraping process, followed by data cleaning (lowercasing, stopwords removal, stemming, and lemmatization) and data preprocessing. The SVM model combined with resampling techniques was then implemented and evaluated using accuracy, precision, and recall metrics. The results indicate that the SVM model achieved an accuracy of 81%, with a weighted average precision of 0.79, recall of 0.81, and F1-score of 0.76. These findings demonstrate that applying resampling techniques to SVM yields good performance in sentiment classification. The study is expected to contribute to the development of sentiment analysis methods using the SVM model with resampling in the context of Google Maps reviews.