This Author published in this journals
All Journal JURTEKSI
Hafiz, Rahmad
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

INTEGRATED AHP-TOPSIS DECISION SYSTEM FOR FAIR STUDENT PERFORMANCE EVALUATION Hafiz, Rahmad; Triyono, Gandung; Assegaf , Noval; Yasmin , Nadia; Effendi , Muhtar
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4064

Abstract

Giving awards is essential to motivate students; however, selecting outstanding students at the junior high school level is often conducted manually and subjectively, which can lead to unfairness and prolonged processing time. This study develops a Decision Support System (DSS) that integrates the Analytical Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to support objective and transparent student selection. A quantitative descriptive approach was employed, with data collected through questionnaires, interviews, and documentation at two state junior high schools in Banjarmasin City. Seven assessment criteria were applied: attendance, behavior, uniform neatness, extracurricular participation, academic grades, competition achievements, and disciplinary records. AHP was used to determine the weight of each criterion, while TOPSIS ranked students based on these weights. The web-based system was developed using PHP and MySQL and evaluated using the Technology Acceptance Model (TAM). Results show that academic grades had the highest weight (28.5%), followed by attendance (22.3%) and competition performance (15.2%). The TAM evaluation yielded average scores of 4.32 for Perceived Ease of Use, 4.40 for Perceived Usefulness, 4.15 for Attitudes Towards Use, and 4.28 for Behavioral Intention to Use. The DSS produces accurate rankings, is well-received by users, and offers an efficient, fair, and replicable solution for data-driven educational governance in the digital era.