Claim Missing Document
Check
Articles

Found 1 Documents
Search

PREDIKSI KEPARAHAN SERANGAN PANIK MENGGUNAKAN METODE FUZZY SUGENO Kusuma, Liestya Arista; Shaleh, Khairul
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.4240

Abstract

Abstract: Panic attacks are psychological disorders that occur suddenly and are characterized by symptoms such as increased heart rate, shortness of breath, dizziness, and a sense of losing control. The assessment of panic attack severity is still subjective and lacks the support of technology-based systems that can provide objective predictions. This study aims to develop a system for predicting the severity of panic attacks using the Fuzzy Sugeno method, which is capable of handling data uncertainty and producing crisp outputs. The data used was obtained from the “Panic Attacks ML Ready Dataset” available on the Kaggle platform. Three input variables were used: heart rate, attack frequency, and attack duration. The system’s output is a severity level prediction categorized into mild, moderate, and severe. The system was built through the stages of fuzzification, construction of 27 IF-THEN fuzzy rules, inference using the minimum method, and defuzzification using the weighted average method. Testing results show that the Fuzzy Sugeno method is capable of providing accurate predictions and can be utilized as a decision support tool for early detection of panic attack disorders, particularly in academic environments. Keywords: panic attack; fuzzy sugeno; decision support system; severity prediction; fuzzy                 logic Abstrak: Serangan panik merupakan gangguan psikologis yang muncul secara tiba-tiba dan ditandai oleh gejala seperti detak jantung meningkat, sesak napas, pusing, serta rasa kehilangan kendali. Penilaian terhadap keparahan serangan panik masih bersifat subjektif dan belum didukung oleh sistem berbasis teknologi yang mampu memberikan hasil prediksi secara objektif. Penelitian ini bertujuan untuk membangun sistem prediksi tingkat keparahan serangan panik menggunakan metode Fuzzy Sugeno, yang mampu menangani ketidakpastian data dan menghasilkan output yang tegas (crisp output). Data yang digunakan bersumber dari dataset “Panic Attacks ML Ready Dataset” yang diperoleh dari platform Kaggle. Tiga variabel input yang digunakan adalah detak jantung, frekuensi serangan, dan durasi serangan. Output dari sistem berupa prediksi tingkat keparahan yang dikategorikan menjadi ringan, sedang, dan parah. Sistem dibangun melalui tahapan fuzzyfikasi, pembentukan aturan fuzzy IF-THEN sebanyak 27 aturan, inferensi menggunakan metode minimum, dan defuzzyfikasi dengan metode weighted average. Hasil pengujian menunjukkan bahwa metode Fuzzy Sugeno mampu memberikan hasil prediksi yang akurat dan bermanfaat sebagai alat bantu dalam deteksi dini gangguan serangan panik, khususnya di lingkungan akademik. Kata kunci: Serangan panik; fuzzy sugeno; sistem pendukung keputusan; prediksi keparahan; logika fuzzy