Al Farros, Mohammad Naufal
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Indoor Quadcopter Localization Using Fuzzy-Sliding Mode Control for Robust Navigation Darwito, Purwadi Agus; Agustina, Nilla Perdana; Pratama, Detak Yan; Al Farros, Mohammad Naufal; Setiadi, Iwan Cony; Biyanto, Totok Ruki; Imron, Choirul
International Journal of Robotics and Control Systems Vol 5, No 3 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i3.1941

Abstract

Growing demand for warehouse automation requires Unmanned Aerial Vehicles (UAVs), particularly quadcopters, to operate autonomously with a high level of precision and reliability. However, indoor localization poses unique challenges due to the absence of Global Positioning System (GPS) signals, making alternative sensors and robust control strategies essential. This study proposes an indoor UAV navigation system that integrates camera and LiDAR sensors with Fuzzy–Sliding Mode Control (Fuzzy-SMC) to enhance stability and reduce the chattering effects commonly associated with Sliding Mode Control. In the proposed method, the camera provides better accuracy for real-time position tracking compared to LiDAR, while fuzzy logic adaptively adjusts the Sliding Mode Control parameters, which serve as the main controller for stabilizing the quadcopter’s nonlinear dynamics. Research methodology includes mathematical modeling of the UAV quadcopter, the design of the Fuzzy-SMC controller, and simulation-based testing for trajectory tracking in indoor environments. Results show that the developed system achieves high accuracy, with error values ranging from 0 to 4.044%, remaining below the acceptable threshold of 5%. These findings demonstrate that integration of a camera with Fuzzy-SMC provides an effective and reliable solution for indoor quadcopter UAV navigation, while future research will focus on optimizing the fuzzy rule base and conducting hardware validation in real warehouse scenarios.