Nisrina Az-Zahra, Putri
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparison of LASSO, Ridge, and Elastic Net Regularization with Balanced Bagging Classifier Nisrina Az-Zahra, Putri; Sadik, Kusman; Suhaeni, Cici; Mohamad Soleh, Agus
Parameter: Jurnal Matematika, Statistika dan Terapannya Vol 4 No 2 (2025): Parameter: Jurnal Matematika, Statistika dan Terapannya
Publisher : Jurusan Matematika FMIPA Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/parameterv4i2pp287-296

Abstract

Predicting Drug-Induced Autoimmunity (DIA) is crucial in pharmaceutical safety assessment, as early identification of compounds with autoimmune risk can prevent adverse drug reactions and improve patient outcomes. Classification analysis often faces challenges when the number of predictor variables exceeds the number of observations or when high correlations among predictors lead to multicollinearity and overfitting. Regularization methods, such as Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), and Elastic-Net, help stabilize parameter estimation and improve model interpretability. This study focuses on building a binary classification model to predict the risk of DIA using 196 molecular descriptors derived from chemical compound structures. To address class imbalance in the response variable, the Balanced Bagging Classifier (BBC) is combined with regularized logistic regression models. Elastic Net + BBC outperforms other models with the highest accuracy (0.825), followed closely by LASSO + BBC and Ridge + BBC (both 0.816). This integration not only improves classification accuracy but also enhances generalization and the reliable detection of minority class instances, supporting the early identification of autoimmune risks in drug discovery.