Guttikonda, Chandra Babu
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A versatile three-level CLLC resonant converter for off-board EV chargers with wide voltage adaptability contribution Guttikonda, Chandra Babu; Varma, Pinni Srinivasa; Kumar, Malligunta Kiran; Rao, Kambhampati Venkata Govardhan; Teerdala, Rakesh; Kanagala, Santoshi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1775-1788

Abstract

The vehicle-to-grid (V2G) concept has gained significant attention in the last decade due to its potential to enhance direct current (DC) microgrid stability and reliability. Electric vehicles (EVs) play a central role in distributed energy storage systems, optimizing efficiency and enabling the integration of renewable energy sources. This study offers a unique three level CLLC resonant converter developed for off-board EV chargers to promote bidirectional power transfer between DC microgrids and EVs. The suggested converter uses resonant CLLC components and two three-level full bridges to effectively handle a broad range of EV battery voltages (200 V–700 V). To ensure effective power conversion, the first harmonic approximation (FHA) model is used to analyse the converter's resonant frequency characteristics. The proposed system achieves high efficiency (>95%), with voltage stability maintained at 750 V under various load conditions. The converter's performance was validated through MATLAB based simulations, comparing proportional integral (PI) and proportional integral derivative (PID) control strategies. The PID-controlled system demonstrated superior dynamic response, reduced current ripples, and enhanced voltage regulation compared to the PI-controlled system. This study demonstrates the viability of implementing a three-level CLLC resonant converter for efficient, bidirectional, and wide-voltage adaptation in EV charging infrastructure, thereby contributing to grid stability and renewable energy integration.