Jinete, Marco Antonio
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Learning assistance module based on a small language model Jinete, Marco Antonio; Jiménez-Moreno, Robinson; Espitia-Cubillos, Anny Astrid
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i5.pp4202-4210

Abstract

This paper presents the development of a low-cost learning assistant embedded in an NVIDIA Jetson Xavier board that uses speech and gesture recognition, together with a long language model for offline work. Using the large language model (LLM) Phi-3 Mini (3.8B) model and the Whisper (model base) model for automatic speech recognition, a learning assistant is obtained under a compact and efficient design based on extensive language model architectures that give a general answer set of a topic. Average processing times of 0.108 seconds per character, a speech transcription efficiency of 94.75%, an average accuracy of 9.5/10 and 8.5/10 in the consistency of the responses generated by the learning assistant, a full recognition of the hand raising gesture when done for at least 2 seconds, even without fully extending the fingers, were obtained. The prototype is based on the design of a graphical interface capable of responding to voice commands and generating dynamic interactions in response to the user's gesture detection, representing a significant advance towards the creation of comprehensive and accessible human-machine interface solutions.