Yusuf, Musalim
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing Student Learning Engagement Through Game-Based Learning Implementation Using Naive Bayes Algorithm at BQ Boarding School Junior High Yusuf, Musalim; Yel, Mesra Betty
Journal Innovations Computer Science Vol. 4 No. 2 (2025): November
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jics.v4i2.323

Abstract

This study investigates the impact of Game-Based Learning (GBL) on students’ learning interest and examines the effectiveness of the Naive Bayes algorithm in predicting engagement levels among junior high school students. Using a quasi-experimental quantitative design, data were collected from fifty seventh-grade students at SMP BQ Boarding School through pre-test and post-test questionnaires administered before and after a four-week GBL intervention. Statistical analysis revealed a significant increase in learning interest, with mean scores rising from 2.85 to 4.10 (t(49) = –10.24, p < 0.001), confirming the positive influence of GBL in promoting motivation and participation. The Naive Bayes classification model achieved an accuracy rate of 90%, with precision and recall values of 0.92 and 0.95 for the high-interest category, respectively. These results demonstrate that GBL effectively transforms classroom dynamics into interactive learning experiences while the Naive Bayes model reliably identifies students’ motivational levels. The combination of pedagogical innovation and predictive analytics presents a practical framework for educators to design adaptive interventions and data-informed teaching strategies. This study underscores the importance of integrating artificial intelligence and game-based methods in education to enhance engagement, motivation, and learning outcomes in the digital era.
Enhancing Student Learning Engagement Through Game-Based Learning Implementation Using Naive Bayes Algorithm at BQ Boarding School Junior High Yusuf, Musalim; Yel, Mesra Betty
Journal Innovations Computer Science Vol. 4 No. 2 (2025): November
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jics.v4i2.323

Abstract

This study investigates the impact of Game-Based Learning (GBL) on students’ learning interest and examines the effectiveness of the Naive Bayes algorithm in predicting engagement levels among junior high school students. Using a quasi-experimental quantitative design, data were collected from fifty seventh-grade students at SMP BQ Boarding School through pre-test and post-test questionnaires administered before and after a four-week GBL intervention. Statistical analysis revealed a significant increase in learning interest, with mean scores rising from 2.85 to 4.10 (t(49) = –10.24, p < 0.001), confirming the positive influence of GBL in promoting motivation and participation. The Naive Bayes classification model achieved an accuracy rate of 90%, with precision and recall values of 0.92 and 0.95 for the high-interest category, respectively. These results demonstrate that GBL effectively transforms classroom dynamics into interactive learning experiences while the Naive Bayes model reliably identifies students’ motivational levels. The combination of pedagogical innovation and predictive analytics presents a practical framework for educators to design adaptive interventions and data-informed teaching strategies. This study underscores the importance of integrating artificial intelligence and game-based methods in education to enhance engagement, motivation, and learning outcomes in the digital era.