Andini Putri Mediani
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Pemodelan Kasus Tuberkulosis di Jawa Tengah dengan Geographically Weighted Negative Binomial Regression Andini Putri Mediani; Toha Saifudin; Nur Chamidah
Limits: Journal of Mathematics and Its Applications Vol. 21 No. 3 (2024): Limits: Journal of Mathematics and Its Applications Volume 21 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tuberkulosis (TB) dianggap sebagai permasalahan kesehatan global yang utama karena menjadi salah satu penyakit menular yang mematikan di seluruh dunia. World Health Organization (WHO) mengategorikan sebanyak 30 negara di dunia dengan beban tinggi kasus TB dengan Negara Indonesia menempati peringkat kedua dalam kategori beban tinggi tersebut. Salah satu provinsi dengan penderita terbanyak kasus TB adalah Provinsi Jawa Tengah. Banyaknya penderita TB di Kabupaten Jawa Tengah menunjukkan bahwa terdapat faktor-faktor yang memengaruhi tingginya kasus TB, sehingga perlu dilakukan analisis secara statistik untuk mengetahui penyebab terjadinya permasalahan tersebut sekaligus mendukung tercapainya target yang berkaitan dengan target SDGs pada poin 3.3, yaitu untuk mengakhiri epidemi TB. Pada jumlah kasus TB yang berupa data diskrit, regresi Poisson merupakan metode yang sesuai untuk memodelkan data diskrit dengan asumsi ekuidispersi yang harus terpenuhi. Namun, untuk kasus TB di Jawa Tengah asumsi tersebut tidak terpenuhi, dengan kata lain terdapat overdispersi. Overdispersi dapat ditangani dengan regresi Binomial Negatif, tetapi dengan mempertimbangkan faktor spasial metode yang sesuai untuk digunakan adalah Geographically Weighted Negative Binomial Regression (GWNBR). Hasil diperoleh fungsi pembobot untuk GWNBR adalah Fixed Gaussian dengan nilai CV terkecil 4427790. Pemodelan dengan GWNBR lebih baik dalam memodelkan jika dibandingkan dengan regresi global. Hal ini diperkuat oleh nilai AIC terkecil, yakni 370,14 sehingga permasalahan overdispersi sudah teratasi. Kemudian, variabel yang berpengaruh signifikan pada setiap kabupaten dan kota di Jawa Tengah adalah persentase rumah tangga yang memiliki sumber air minum layak, jumlah tenaga kesehatan, rasio jenis kelamin, dan jumlah penduduk usia produktif dengan besar pengaruh yang berbedabeda.