Kristia Anggraeni
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Model Regresi untuk Return Aset dengan Volatilitas Mengikuti Model GARCH(1,1) Berdistribusi Epsilon-Skew Normal dan Student-t Didit Budi Nugroho; Kristia Anggraeni; Hanna Arini Parhusip
Limits: Journal of Mathematics and Its Applications Vol. 17 No. 2 (2020): Limits: Journal of Mathematics and Its Applications Volume 17 Nomor 2 Edisi De
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Studi ini mendiskusikan dua perluasan dari model GARCH(1,1), yaitu AR(1)-GARCH(1,1) dan MA(1)-GARCH(1,1), yang diperoleh dengan cara menambahkan Autoregression tingkat 1 atau Moving Average tingkat 1 pada persamaan return . Untuk kasus ini, error dari return diasumsikan berdistribusi Normal, Skew Normal (SN), Epsilon Skew Normal (ESN), dan Student- t . Analisis terhadap model didasarkan pada pencocokan model untuk return dari indeks saham FTSE100 periode harian dari Januari 2000 sampai Desember 2017 dan indeks saham TOPIX periode harian dari Januari 2000 sampai Desember 2014. Model yang dipelajari diestimasi menggunakan metode GRG ( Generalized Reduced Gradient ) Non Linear yang tersedia di Solver Excel dan juga metode Adaptive Random Walk Metropolis (ARWM) yang diimplementasikan pada program Scilab. Hasil estimasi dari kedua alat bantu tersebut menunjukkan nilai-nilai yang hampir sama, mengindikasikan bahwa Solver Excel mempunyai kemampuan yang handal dalam mengestimasi parameter model. Uji rasio log- likelihood dan AIC ( Akaike Information Criterion ) menunjukkan bahwa model dengan distribusi ESN lebih unggul dibandingkan dengan model-model berdistribusi tipe normal lainnya untuk setiap kasus model dan data pengamatan, bahkan ini bisa mengungguli distribusi Student- t pada suatu model dan data pengamatan. Lebih lanjut, model-model dengan penambahan proses regresi di persamaan return menyediakan pencocokan yang lebih baik daripada model dasar, dimana pencocokan terbaik untuk kedua data pengamatan diberikan oleh model AR(1)-GARCH(1,1) berdistribusi Student- t .