Rizki Ladipa YM
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Bilangan Kromatik Lokasi Graf Amal(K_n, K_m) Syafrizal Sy; Rizki Ladipa YM; Monika Rianti Helmi
Limits: Journal of Mathematics and Its Applications Vol. 21 No. 3 (2024): Limits: Journal of Mathematics and Its Applications Volume 21 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Misalkan G adalah pasangan terurut (V, E), yaitu graf terhubung, dan c adalah suatu pemetaan warna pada graf G yang didefinisikan sebagai c dari V(G) ke himpunan {1, 2, ..., t}, dengan t adalah bilangan asli. Jika simpul u dan v bertetangga di G, maka c(u) tidak sama dengan c(v). Misalkan S_h adalah himpunan simpul yang diberi warna h untuk setiap h anggota {1, 2, ..., t}, maka S_h disebut kelas warna. Misalkan Pi adalah partisi dari himpunan simpul V(G) yaitu Pi = {S_1, S_2, ..., S_t} untuk suatu pewarnaan. Kode warna c_Pi dari simpul v dalam G didefinisikan sebagai vektor dengan t komponen yaitu c_Pi(v) = (d(v, S_1), d(v, S_2), ..., d(v, S_t)), di mana d(v, S_h) adalah jarak minimum antara v dan setiap simpul x dalam S_h, yaitu d(v, S_h) = minimum dari d(v, x) untuk x dalam S_h, dan h dari 1 sampai t. Jika setiap simpul dalam G memiliki kode warna yang berbeda untuk suatu partisi Pi, maka pewarnaan c disebut sebagai pewarnaan lokasi. Nilai minimum dari t sedemikian sehingga G memiliki pewarnaan lokasi dengan t warna disebut sebagai bilangan kromatik lokasi, dan dinotasikan dengan chi sub L dari G. Dalam penelitian ini dibahas tentang bilangan kromatik lokasi dari graf Amal(K_n, K_m). Graf Amal(K_n, K_m) adalah graf yang dibentuk dengan menggabungkan satu simpul di setiap graf lengkap K_n ke setiap simpul di graf lengkap K_m secara satu-satu, dengan syarat m dan n lebih besar atau sama dengan 2, dan m serta n adalah bilangan asli. Dengan menentukan batas bawah dan batas atas bilangan kromatik lokasi, diperoleh bahwa bilangan kromatik lokasi dari graf Amal(K_n, K_m) adalah: sebesar n + 1 jika m lebih kecil atau sama dengan n, dan sebesar m jika m lebih besar dari n