Imam Muttaqin, Almas Najiib
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Single-Image Face Recognition For Student Identification Using Facenet512 And Yolov8 In Academic Environtment With Limited Dataset Imam Muttaqin, Almas Najiib; Luthfiarta, Ardytha; Nugraha, Adhitya; Salsabila, Pramesya Mutia
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.3908

Abstract

Face recognition has become one of the most significant research areas in image processing and computer vision, mainly due to its wide applications in security, identity verification, and human and machine interaction. In this study, FaceNet512 and YOLOv8 models are used to overcome the challenges in face recognition with a limited dataset, which is only one formal photo per individual. The application of image augmentation to the model achieved 90% accuracy and ROC curve of 0.82, while the model without augmentation achieved 89% accuracy and ROC curve of 0.79. FaceNet512 showed superiority in producing more accurate and detailed facial representations compared to other models, such as ArcFace and FaceNet, especially in handling minimal facial variations. Meanwhile, YOLOv8 provides efficient face detection across various lighting conditions and viewing angles. The main challenge in this research is the low quality of the original image, which can reduce the accuracy of face recognition. These results show the great potential of using deep learning-based face recognition systems in the real world, especially for automatic attendance applications in academic environments.