Achmad Fahrezi, Irgy
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Mobile-Based Real-Time Ornamental Rose Classification System Using YOLOv8 Algorithm on Digital Imagery Achmad Fahrezi, Irgy; Poerwandono, Edhy
Journal Innovations Computer Science Vol. 4 No. 2 (2025): November
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jics.v4i2.339

Abstract

This research introduces a mobile-based system for real-time identification of ornamental rose varieties using the YOLOv8 deep learning algorithm. Motivated by the growing interest in ornamental plants during the COVID-19 pandemic and the high penetration of smartphone users in Indonesia, the study aims to create an efficient and accessible flower recognition tool. A dataset of 813 labeled rose images—red, white, yellow, orange, and pink—was collected from the Roboflow platform and processed using data augmentation techniques to improve model generalization. The YOLOv8 model was trained with 100 epochs, a batch size of 16, and the SGD optimizer, then converted to TensorFlow Lite for mobile deployment through the Flutter framework. Experimental results achieved a mean average precision (mAP50–95) of 0.581, with strong detection performance across most classes. The system successfully operated offline, delivering real-time classification accuracy despite dataset imbalance, particularly in the orange rose class. These findings demonstrate that YOLOv8 can be effectively adapted for mobile horticultural applications, offering practical benefits for flower sorting, crop management, and educational use. Future studies are recommended to expand dataset diversity, enhance environmental testing, and explore cloud-based integration for scalable deployment.
Mobile-Based Real-Time Ornamental Rose Classification System Using YOLOv8 Algorithm on Digital Imagery Achmad Fahrezi, Irgy; Poerwandono, Edhy
Journal Innovations Computer Science Vol. 4 No. 2 (2025): November
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jics.v4i2.339

Abstract

This research introduces a mobile-based system for real-time identification of ornamental rose varieties using the YOLOv8 deep learning algorithm. Motivated by the growing interest in ornamental plants during the COVID-19 pandemic and the high penetration of smartphone users in Indonesia, the study aims to create an efficient and accessible flower recognition tool. A dataset of 813 labeled rose images—red, white, yellow, orange, and pink—was collected from the Roboflow platform and processed using data augmentation techniques to improve model generalization. The YOLOv8 model was trained with 100 epochs, a batch size of 16, and the SGD optimizer, then converted to TensorFlow Lite for mobile deployment through the Flutter framework. Experimental results achieved a mean average precision (mAP50–95) of 0.581, with strong detection performance across most classes. The system successfully operated offline, delivering real-time classification accuracy despite dataset imbalance, particularly in the orange rose class. These findings demonstrate that YOLOv8 can be effectively adapted for mobile horticultural applications, offering practical benefits for flower sorting, crop management, and educational use. Future studies are recommended to expand dataset diversity, enhance environmental testing, and explore cloud-based integration for scalable deployment.