Adhika Tyo Ferdiansyah
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementasi Penerapan Decision Tree dalam Klasifikasi resiko Stroke pada usia muda Nikodemus Christiano David; Muhammad Rizky Aggara; Daffa Islam Fatahillah; Muhammad Rafi Salman; Adhika Tyo Ferdiansyah
Jurnal Riset Multidisiplin Edukasi Vol. 2 No. 10 (2025): Jurnal Riset Multidisiplin Edukasi (Edisi Oktober 2025)
Publisher : PT. Hasba Edukasi Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.71282/jurmie.v2i10.1053

Abstract

This research focuses on the application of decision tree methods for identifying the risk of stroke among young adults. Stroke is a significant health concern globally, often leading to long-term disability or death. Identifying individuals at high risk can help in early intervention and prevention strategies. We employed a decision tree algorithm to analyze various risk factors, such as hypertension, diabetes, smoking habits, and physical inactivity. The data was collected from a healthcare database, consisting of young adults aged 18 to 40 years. Our results demonstrate that the decision tree model is effective in classifying individuals with a high risk of stroke, with an accuracy rate of 67,71%. This study suggests that decision tree algorithms can be a valuable tool in clinical settings for early identification and management of stroke risk in young adults. Keywords: decision tree, stroke risk, young adults, machine learning, healthcare
ANALISIS PENERAPAN SISTEM CERDAS DALAM MANAJEMEN LALU LINTAS BERBASIS REAL-TIME Daffa Islam Fatahillah; Rafi Salman, Muhammad; Adhika Tyo Ferdiansyah; dewioktafiani; Achmad Nur Sholeh
SISKOMTI: Jurnal Sistem Informasi Komputer dan Teknologi Informasi Vol. 7 No. 2 (2025): Agustus 2025
Publisher : Universitas Lembah Dempo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54342/9m24tp85

Abstract

Integrasi sistem cerdas dalam manajemen lalu lintas perkotaan merupakan strategi penting untuk mengatasi permasalahan kemacetan di wilayah metropolitan. Penelitian ini mengkaji penerapan sistem lalu lintas pintar berbasis data real-time di Kota Surakarta, dengan fokus pada implementasi Area Traffic Control System (ATCS). Metode penelitian yang digunakan meliputi studi literatur dan analisis dokumentasi dari Dinas Perhubungan Kota Surakarta. Hasil kajian menunjukkan bahwa penerapan ATCS memberikan kontribusi positif terhadap peningkatan efisiensi arus lalu lintas di beberapa persimpangan utama. Namun demikian, keterbatasan infrastruktur dan sumber daya manusia masih menjadi tantangan yang perlu diatasi. Oleh karena itu, pengembangan berkelanjutan dan peningkatan kapasitas teknis diperlukan agar sistem ini dapat dioptimalkan secara maksimal serta mendukung pencapaian visi kota pintar (smart city).