Budiyanto, Irfan
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Segmentasi Nasabah Kartu Kredit Berdasarkan Pola Transaksi untuk Penentuan Profil Nasabah Budiyanto, Irfan; Hermawan, Arief; Avianto, Donny
JURNAL INFORMATIKA DAN KOMPUTER Vol 9, No 3 (2025): Oktober 2025
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat - Universitas Teknologi Digital Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiko.v9i3.1669

Abstract

Segmentasi nasabah kartu kredit penting untuk optimasi strategi pemasaran dan personalisasi layanan. Penelitian ini mengusulkan sistem segmentasi nasabah berdasarkan pola transaksi, yaitu frekuensi dan nilai transaksi, menggunakan algoritma K-Means Clustering. Dataset dari Kaggle, yang telah melalui tahap preprocessing, digunakan untuk mengidentifikasi cluster optimal. Metode Elbow dan Silhouette digunakan untuk menentukan jumlah cluster, dan keduanya mengindikasikan jumlah cluster optimal sebanyak 3, dengan titik siku pada grafik inersia di k=3 dan skor Silhouette tertinggi juga di k=3.  Hasilnya, terdapat tiga cluster nasabah: nasabah aktif tarik tunai (ditandai dengan tingginya penggunaan cash advance), nasabah pasif (dengan frekuensi dan nilai transaksi rendah), dan nasabah aktif transaksi pembelian (dengan aktivitas pembelian tinggi dan penggunaan cash advance rendah). K-Means terbukti efektif dalam membagi nasabah menjadi tiga cluster berbeda ini.  Segmentasi ini memungkinkan strategi pemasaran yang lebih tertarget, seperti penawaran produk finansial yang relevan untuk setiap cluster, dan pada akhirnya dapat meningkatkan kepuasan nasabah serta profitabilitas.
The Impact of Extreme Data Imbalance on Evaluation Metrics of Deep Learning Models for Loan Default Prediction Budiyanto, Irfan; Hermawan, Arief; Avianto, Donny; Kusban, Muhammad
Emitor: Jurnal Teknik Elektro Vol 25, No 2: July 2025
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/emitor.v25i2.10719

Abstract

The growth of financial technology has made online loans more accessible, but it has also increased the risk of borrowers failing to repay. Developing a reliable system to predict loan defaults is therefore very important. A common problem in these predictions is an imbalance in the data – there are far fewer cases of loan defaults (the minority class) than loans that are paid back on time (the majority class). This imbalance can cause the prediction models to be biased. This research specifically investigates the effect of an extremely increased data imbalance ratio (from 1:170 to 1:33,612) on the evaluation metrics of a Deep Neural Network (DNN) model, particularly when using the Adaptive Synthetic Sampling (ADASYN) oversampling technique. The method used involves adopting a previous research approach that combines ADASYN to handle data imbalance and DNN for prediction, applied to an updated Lending Club dataset with a more severe level of imbalance. The results demonstrate a critical breakdown in key evaluation metrics. Compared to previous research, Accuracy remains high (0.9515) and Specificity is strong (0.9516). However, there is a catastrophic decrease in Precision to almost zero (0.0001), a very low Recall (0.1667), and a resulting F1-Score that is also nearly zero (0.0002). A visual analysis using Principal Component Analysis (PCA) reveals that this decline in Precision is caused by synthetic minority samples generated by ADASYN completely overlapping with the original majority cluster, leading to a massive number of false positives. In conclusion, ADASYN fails to maintain a usable performance level under extreme imbalance conditions, rendering the model ineffective for its intended purpose and highlighting the critical need for alternative strategies when dealing with severe minority class scarcity.
Evaluasi Fitur Berbasis Peringkat: Analisis Komparatif SHAP vs 'Gain' LightGBM Menggunakan Evaluasi Iteratif untuk Prediksi Gagal Bayar Budiyanto, Irfan
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 11, No 3 (2025): Volume 11 No 3
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v11i3.101307

Abstract

Prediksi gagal bayar dalam bisnis P2P lending sangat penting sebagai bagian manajemen risiko, namun pada prakteknya sering dihadapkan pada tantangan data berdimensi tinggi, ketidakseimbangan kelas, dan kebutuhan interpretasi model black box. Salah satu tantangan utama adalah dilema pemilihan fitur, apakah menggunakan metode Explainable AI (XAI) seperti SHAP yang akurat secara teoritis namun membutuhkan resource komputasi lebih, atau menggunakan metode gain bawaan model seperti LightGBM yang jauh lebih efisien. Penelitian ini bertujuan untuk menentukan secara empiris apakah resource komputasi SHAP memberikan keunggulan kinerja yang signifikan dibandingkan metode gain LightGBM untuk tugas global feature ranking dalam prediksi gagal bayar. Penelitian menggunakan dataset Lending Club, metodologi penelitian membandingkan peringkat fitur dari kedua metode melalui skema forward feature selection iteratif. Pendekatan ini diuji pada data asli dan data yang diseimbangkan menggunakan teknik oversampling ADASYN. Hasil penelitian menunjukkan dua temuan utama. Pertama, ADASYN efektif meningkatkan recall (metrik utama) sekitar 10%. Kedua, kinerja prediktif model yang dihasilkan dari peringkat fitur berbasis gain LightGBM dan berbasis SHAP adalah identik secara statistik, dengan deviasi metrik di bawah 0.6%. Kinerja optimal juga tercapai hanya dengan 15-20 fitur teratas. Kesimpulannya, resource komputasi SHAP tidak dapat dibenarkan untuk tugas global feature ranking dalam skenario ini. Metode gain bawaan LightGBM terbukti memadai dan efisien, berkontribusi pada pengembangan model yang lebih sederhana tanpa mengorbankan daya prediksi