Gifari, Muhammad Rifky
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Perancangan Website Penjualan dengan Metode Lean UX dan User Experience Questionnaire Gifari, Muhammad Rifky; Prasetyo, Muhamad Awiet Wiedanto
Jurnal Tekno Kompak Vol 18, No 2 (2024): AGUSTUS
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jtk.v18i1.3938

Abstract

Penelitian ini fokus pada pengembangan pengalaman komunikasi dalam pemasaran produk dan jasa Radcom Solusindo Informatika dengan merancang sistem informasi penjualan menggunakan metode Lean UX dan Bersandar UX. Rumusan masalahnya adalah mengatasi dampak keterbatasan aksesibilitas dan jangkauan akibat tidak adanya website pada Radcom Solusindo Informatika.Metode penelitian melibatkan deklarasi asumsi melalui interaksi langsung dengan pengguna menggunakan wawancara dan penyebaran kuesioner. Minimum Viable Product (MVP) digunakan untuk membuat prototipe dan mengevaluasi hipotesis. User Experience Questionnaire (UEQ) digunakan untuk mengevaluasi kualitas dan pengalaman pengguna, dengan enam dimensi seperti daya tarik, kejelasan, efisiensi, keandalan, stimulasi, dan kebaruan.Hasil evaluasi UEQ menunjukkan bahwa desain website sistem informasi penjualan Radcom Solusindo Informatika mendapatkan penilaian "Good" pada daya tarik, kejelasan, efisiensi, dan ketepatan. Stimulasi dinilai "Excellent", sementara kebaruan mendapatkan penilaian "Good". Dengan demikian, desain ini dinilai positif dari segi pengalaman pengguna, memberikan dasar untuk perbaikan lebih lanjut.
Penerapan Algoritma K-Means Untuk Clustering Harga Rumah Di Bandung Aji, Briyan Gifari; Sondawa, Dwi Chandra Aditya; Gifari, Muhammad Rifky; Wijayanto, Sena
Jurnal Ilmiah Informatika Global Vol. 14 No. 2
Publisher : UNIVERSITAS INDO GLOBAL MANDIRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36982/jiig.v14i2.3189

Abstract

The need for shelter is one of the fundamental aspects of daily life for humans. A house serves not only as a place to seek protection and rest but also as a venue for socializing with family. One of the factors influencing the decision in choosing a house is its price. House prices vary in each region, depending on factors such as location and other attributes. In major cities like Bandung, house prices differ based on their categories. However, many people still find it challenging to determine the value and discern whether a house is classified as affordable or expensive. Hence, there is a need for a clustering process of house prices in Bandung to aid in comprehending and categorizing house prices based on attributes such as the house price, total building area, and total land area. To understand and analyze the patterns of house prices in Bandung, this study utilizes the K-Means method to cluster the house price data into several groups based on their similarity in attributes. Additionally, the research aims to determine the optimal number of clusters through the cluster validation process using the silhouette index. The findings show that when using n_cluster=2, a silhouette score of 0.8870 is obtained, and with n_cluster=3, the silhouette score is 0.8009. These results indicate that clustering with n_cluster=2 and n_cluster=3 both exhibit strong interpretative structures. Thus, the clustering of house prices in Bandung can be effectively grouped into 2 clusters, as evidenced by the higher silhouette score obtained with n_cluster=2, approaching 1 compared to n_cluster=3.