This Author published in this journals
All Journal JURTEKSI
Rana Aphrodita, Ishiqa
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PREDICTION OF STROKE USING LOGISTIC REGRESSION WITH A MACHINE LEARNING APPROACH Rana Aphrodita, Ishiqa; Nur Fajri, Ika; Nugroho, Agung
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4161

Abstract

Abstract: Stroke is one of the leading causes of death and disability in various parts of the world, including in Indonesia. Along with the development of digital technology, the use of Machine Learning in the health sector is growing, one of which is in an effort to predict the occurrence of stroke. This study aims to implement the Logistic Regression algorithm in predicting the likelihood of a person having a stroke based on data from the Brain Stroke dataset. The research process includes data preprocessing (missing value handling, normalization, and label encoding), dividing the data into 80% training data and 20% test data, as well as model training. The model was then evaluated using several measures such as accuracy, precision, recall, F1-score, and ROC-AUC, as well as a confusion matrix. The results of the study showed that Logistic Regression was able to provide stroke classification results with an accuracy of 82.4%, precision of 80.1%, recall of 78.6%, F1-score of 79.3%, and a ROC-AUC value of 0.87. Then, the model is integrated into applications that use Streamlit, so it can be used interactively to predict stroke risk in new data. The results of this study show that the combination of Machine Learning and web-based applications has the potential to support efforts to detect early stroke risk. Keywords: logistic regression; machine learning; prediction; streamlit; stroke. Abstrak: Stroke adalah salah satu penyebab utama kematian dan kecacatan di berbagai belahan dunia, termasuk di Indonesia. Seiring perkembangan teknologi digital, penggunaan Machine Learning dalam bidang kesehatan semakin berkembang, salah satunya dalam upaya memprediksi terjadinya penyakit stroke. Penelitian ini bertujuan untuk mengimplementasikan algoritma Logistic Regression dalam memprediksi kemungkinan seseorang mengalami stroke berdasarkan data dari dataset Brain Stroke. Proses penelitian meliputi preprocessing data (penanganan missing value, normalisasi, dan label encoding), membagi data menjadi 80% data latih dan 20% data uji, serta pelatihan model. Model kemudian dievaluasi menggunakan beberapa ukuran seperti akurasi, precision, recall, F1-score, dan ROC-AUC, serta confusion matrix. Hasil penelitian menunjukkan bahwa Logistic Regression mampu memberikan hasil klasifikasi penyakit stroke dengan akurasi sebesar 82,4%, precision 80,1%, recall 78,6%, F1-score 79,3%, dan nilai ROC-AUC sebesar 0,87. Kemudian, model tersebut diintegrasikan ke dalam aplikasi yang menggunakan Streamlit, sehingga dapat digunakan secara interaktif untuk memprediksi risiko stroke pada data baru. Hasil penelitian ini menunjukkan bahwa kombinasi Machine Learning dan aplikasi berbasis web berpotensi mendukung upaya deteksi dini risiko stroke. Kata kunci: logistic regression; machine learning; prediksi; streamlit; stroke.