Rahmanda, Rayhan Fadhil
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Effectiveness of Bi-GRU and FastText in Sentiment Analysis of Shopee App Reviews Rahmanda, Rayhan Fadhil; Sibaroni, Yuliant; Prasetiyowati, Sri Suryani
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 1 (2025): Research Article, January 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.14474

Abstract

E-commerce is proof of evolution in the economic field due to its flexibility to shop for various necessities of life anytime and anywhere. Shopee is one of the e-commerce platforms in demand by people from varied circles in Indonesia. Multiple reviews are shed publicly by Shopee users on the Google Play Store regarding shopping experiences, which can be positive or negative. This condition affects the decision of other users to shop at Shopee, thus impacting the increase or decrease in profits from Shopee itself. Therefore, user sentiment analysis is needed as a form of effort to maintain user trust in Shopee. This research aims to build a system to classify the sentiment of Shopee application users through reviews in the Google Play Store by utilizing the Bidirectional Gated Recurrent Unit (Bi-GRU) deep learning model. The dataset contains 9,716 reviews, including 3,937 positive and 5,779 negative sentiments. Several test scenarios were conducted to achieve the highest peak of performance, utilizing TF-IDF feature extraction, FastText feature expansion, and optimization using the Cuckoo Search Algorithm. Additionally, SMOTE resampling was utilized to correct the dataset’s uneven distribution. The combined test scenarios mentioned significantly improved the accuracy by 1.03% and F1-Score by 1.04% from the baseline, with the highest accuracy reaching 90.48% and the highest F1-Score of 90.16%.