Claim Missing Document
Check
Articles

Found 2 Documents
Search

Transformasi Kota Cerdas dalam Mitigasi Banjir: Pemodelan Curah Hujan DKI Jakarta dengan Pendekatan Spatial Vector Autoregressive (SpVAR) dan Pemetaan Bobot Queen Contiguity Melanwati, Rinda Lolita; Sumarminingsih, Eni; Pramoedyo, Henny
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107537

Abstract

Perubahan iklim dan cuaca ekstrem menjadi tantangan global, termasuk di Indonesia, dengan peningkatan banjir di DKI Jakarta. Penanggulangan membutuhkan peramalan curah hujan yang akurat. Model VAR digunakan untuk memahami hubungan variabel cuaca. Namun, data deret waktu sering memiliki dimensi spasial. Oleh karena itu, dikembangkan model Spatial Vector Autoregressive (SpVAR) yang mempertimbangkan dimensi spasial dan waktu. Pembobot queen contiguity digunakan untuk representasi yang lebih akurat. Penelitian ini memanfaatkan data BPS DKI Jakarta dari Januari 2017 hingga Desember 2021. Hasilnya menunjukkan pengaruh spasial dalam model SpVAR (1,3) dengan bobot queen contiguity. Curah hujan, suhu, dan kelembaban udara saling mempengaruhi di wilayah diprediksi dan lainnya. Model ini penting dalam strategi mitigasi banjir dan kebijakan kota cerdas untuk mengurangi risiko banjir di DKI Jakarta.   Abstract Climate change and extreme weather pose global challenges, including in Indonesia, leading to increased floods in DKI Jakarta. Addressing this requires accurate rainfall forecasts. The VAR model is used to understand the relationships between weather variables. However, time series data often have spatial dimensions. Therefore, a Spatial Vector Autoregressive (SpVAR) model has been developed considering both spatial and temporal dimensions. Queen contiguity weighting is used for more accurate representation. This study utilizes BPS DKI Jakarta data from January 2017 to December 2021. The results show spatial influence in the SpVAR (1,3) model with queen contiguity weighting. Rainfall, temperature, and humidity mutually influence predicted and other areas. This model is crucial for flood mitigation strategies and smart city policies to reduce flood risks in DKI Jakarta.
Reconstruction of Rainfall Patterns with the SpVAR Method: Spatial Analysis in DKI Jakarta Melanwati, Rinda Lolita; Sumarminingsih, Eni; Pramoedyo, Henny
Jurnal Penelitian Pendidikan IPA Vol 9 No 12 (2023): December
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v9i12.4895

Abstract

Unexpected rainfall is often a challenge for urban areas such as DKI Jakarta. Therefore, this study aims to establish a Spatial Vector Autoregressive (SpVAR) model to analyze rainfall data in DKI Jakarta from 2017 to 2021. This study used three endogenous variables: the amount of rainfall, air temperature and humidity. The use of the SpVAR method with uniform spatial weighting in the DKI Jakarta area was chosen to provide an initial picture of the potential for spatial interactions between various locations in a complex climate context. This method provides valuable insight into the possibility of spatial dependence during climate change in DKI Jakarta. The SpVAR (1.3) model is based on the VAR (p) model by limiting the spatial orders to one. Parameters of the SpVAR model (1.3) were estimated using the FIML method to identify significant factors in the influence of rainfall in the region. The results showed that the SpVAR model (1.3) shows that rainfall, air temperature and humidity in one location are affected by the same variables in other locations. However, not all of them significantly affect five areas in DKI Jakarta Province. This study confirms the effectiveness of the SpVAR method in analyzing spatial patterns of rainfall, provides essential insights for understanding climate, and supports decision-making that is more responsive to urban disasters in the future.