Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis data peminjaman perpustakaan untuk meningkatkan layanan dan efisiensi pengelolaan UPT Perpustakaan UIN Syekh Ali Hasan Ahmad Addary Padangsidimpuan Ritonga, Ihdi Syahputra
Al-Kuttab : Jurnal Kajian Perpustakaan, Informasi dan Kearsipan Vol 6, No 1 (2024): Al-Kuttab: Jurnal Kajian Perpustakaan, Informasi dan Kearsipan
Publisher : Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padangsidimpuan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24952/ktb.v6i1.10495

Abstract

This research was conducted to investigate how data analysts can be used to improve library services for librarians and visitors. In today's digital era, libraries are required to provide better and more efficient services to meet the needs of their users. Data analyst, as a science that utilizes technology to collect, analyze and utilize data, is considered to have great potential for use in libraries. This research was conducted using a quantitative approach. The data obtained from the catalog dataset library were then analyzed using relevant data analysis techniques, the authors conducted a literature review to gain a deeper understanding of how data analysts have been implemented in the library. The results of the analysis of the data, over the past 5 years, the average number of loans that came from alumni was 566 times. The Visit Trend data shows that there has been a gradual increase from the beginning of 2020 to May 2022, February 20th has the most visits with a total of 494 visits, followed by March and May. books with a high number of loans, such as "Research procedures a practical approach" and "Methods of Islamic studies". In order to comply with requests for permits and shorten waiting times, the number of sample books should be increased. Current library visits often increase, especially in September each year. This shows how important it is to prepare sufficient stock of books and ensure proper service availability during this period. Evaluate penalty policies, better reminders for loans, and efforts to reduce loan amounts that exceed the required time limit.
Predicting Employment Status 6 Months After Graduation with Machine Learning Learning : A Comparative Study of 3,945 Indonesian Graduates Ritonga, Ihdi Syahputra; Zainal , Muhammad Rahfiqa; Zaki, Ahmad
Intellect : Indonesian Journal of Learning and Technological Innovation Vol. 4 No. 02 (2025): Intellect : Indonesian Journal of Learning and Technological Innovation
Publisher : Yayasan Lembaga Studi Makwa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57255/intellect.v4i02.1392

Abstract

The high unemployment rate of undergraduate graduates in Indonesia, reaching 11.4% in the first six months after graduation, indicates the need for an early prediction system to identify factors that influence student employability. This study aims to analyze and compare the performance of three machine learning algorithms (Random Forest, Logistic Regression, and XGBoost) to predict employment status 6 months after graduation based on academic and socioeconomic data. The dataset consists of 3,945 graduates from universities in Padangsidimpuan with variables of study program, study duration, GPA, gender, and parental income. The operational target is employment status 6 months after graduation (binary: employed = 1, not yet = 0) with the proportion of employed classes: 48.2 %, not yet: 51.8%. Evaluation uses stratified 5- fold cross-validation with accuracy metrics, balanced accuracy, F1- macro, ROC-AUC, and PR-AUC. Model interpretability is analyzed using permutation importance and SHAP values. Random Forest achieved the best performance with F1- macro 0.524±0.015, ROC-AUC 0.567±0.012, followed by Logistic Regression (F1- macro : 0.511±0.018) and XGBoost (F1- macro : 0.506±0.020). The majority baseline achieved an accuracy of 51.8 %. Permutation importance analysis identified GPA as the most influential factor (importance : 0.082), followed by parental income (0.067) and duration of study (0.041). The machine learning model provided a moderate improvement compared to the majority baseline. GPA and socioeconomic factors were shown to significantly influence graduates' employment status. These findings can support the development of an early warning system for data-based student mentoring. Abstrak Tingginya tingkat pengangguran lulusan sarjana di Indonesia mencapai 11.4% dalam enam bulan pertama pasca kelulusan menunjukkan perlunya sistem prediksi dini untuk mengidentifikasi faktor-faktor yang mempengaruhi employability mahasiswa. Penelitian ini bertujuan menganalisis dan membandingkan performa tiga algoritma machine learning (Random Forest, Logistic Regression, dan XGBoost) untuk memprediksi status kerja 6 bulan pascawisuda berdasarkan data akademik dan sosial ekonomi. Dataset terdiri dari 3.945 data lulusan dari universitas di Padangsidimpuan dengan variabel program studi, durasi studi, IPK, jenis kelamin, dan penghasilan orang tua. Target operasional adalah status kerja 6 bulan pascawisuda (biner: bekerja=1, belum=0) dengan proporsi kelas bekerja:48.2%, belum:51.8%. Evaluasi menggunakan stratified 5-fold cross-validation dengan metrik akurasi, balanced accuracy, F1-macro, ROC-AUC, dan PR-AUC. Interpretabilitas model dianalisis menggunakan permutation importance dan SHAP values. Random Forest mencapai performa terbaik dengan F1-macro 0.524±0.015, ROC-AUC 0.567±0,012, diikuti Logistic Regression (F1-macro: 0.511±0,018) dan XGBoost (F1-macro: 0.506±0.020). Baseline mayoritas mencapai akurasi 51,8%. Analisis permutation importance mengidentifikasi IPK sebagai faktor paling berpengaruh (importance: 0.082), diikuti penghasilan orang tua (0.067) dan durasi studi (0.041). Model machine learning memberikan peningkatan moderat dibanding baseline mayoritas. IPK dan faktor sosial ekonomi terbukti berpengaruh signifikan terhadap status kerja lulusan. Temuan ini dapat mendukung pengembangan sistem early warning untuk pendampingan mahasiswa berbasis data.