Penelitian ini mengukur akurasi metode Decision Tree CHAID dalam mengklasifikasikan status gizi bayi dengan menambahkan atribut jenis kelamin dan lokasi desa posyandu. Hasil penelitian ini adalah situs web berbasis server lokal untuk menguji sistem klasifikasi tersebut. Prosesnya meliputi impor data, pembagian data latih dan uji, pelatihan model, pemilihan algoritma, dan pengujian matriks. Dari 3106 data antara Januari hingga Februari 2024, akurasi pada data uji mencapai 0,90, pada data latih 0,99, dan akurasi algoritma CHAID 0,84. Variabel yang digunakan meliputi usia, desa, posyandu, tinggi badan, berat badan, dan jenis kelamin. Kelas status gizi meliputi gizi baik, gizi buruk, gizi kurang, gizi berlebih, obesitas, dan risiko gizi berlebih. This research aims to measure the accuracy of the Decision Tree CHAID method in classifying the nutritional status of infants by adding new attributes such as gender and village posyandu location. The outcome of this research is a locally hosted website for testing the classification system using the CHAID-based Decision Tree method. The process includes data import, splitting data into training and testing sets, training the machine learning model, selecting the appropriate algorithm, and performing a confusion matrix test. From 3106 data entries collected between January and February 2024, the accuracy on the test data reached 0.90, on the training data 0.99, and the CHAID algorithm accuracy was 0.84. The variables used include age, village, posyandu, height, weight, and gender. The nutritional status classes used as labels in this study are good nutrition, malnutrition, undernutrition, overnutrition, obesity, and risk of overnutrition.