Aldana, Sabilla
Universitas Stikubank (Unisbank) Semarang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Data Mining Terhadap Klasifikasi Pasien Penderita Penyakit Liver Menggunakan Metode K-Nearest Neighbor Aldana, Sabilla; Wibowo, Jati Sasongko
Progresif: Jurnal Ilmiah Komputer Vol 20, No 1: Februari 2024
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/progresif.v20i1.1376

Abstract

Liver sufferers are increasing from year to year. Liver disease is caused by an unhealthy lifestyle that can damage the liver. Liver disease is considered a silent killer because of the possibility of symptoms arising. Therefore, knowing the symptoms of liver disease early on is very necessary, so that sufferers can take appropriate treatment. This study implements the K-Nearest Neighbor algorithm in predicting liver disease in patients. The data used is the Indian Liver Patient Dataset (ILPD) taken from the UCI Machine Learning Repository. There are several stages of the classification process that will be carried out, including data separation, dividing test data and training data, KNN modeling, then analyzed using a confusion matrix and also an accuracy score. In this study, the results were obtained from the level of accuracy of the data, namely the value of accuracy, precision, recall, and also the f1-score with an accuracy value of 70%, a precision of 66.5%, a recall of 59.5%, and an f1-score of 59. 5% of the highest K = 7 value. So the K-Nearest Neighbor algorithm is quite accurate for classifying patient data with liver disease because the data accuracy rate is above 50%.Keywords: Classification; Liver Disease; K-Nearest Neighbor; Confusion Matrix                                                                                                                        AbstrakPenderita liver meningkat dari tahun ke tahun. Penyakit liver disebabkan oleh gaya hidup yang tidak sehat sehingga dapat merusak hati. Penyakit liver dianggap sebagai pembunuh diam-diam karena adanya kemungkinan timbul gejala karena itu mengetahui adanya gejala penyakit liver sejak dini sangat diperlukan, agar penderita dapat melakukan pengobatan dengan tepat. Penelitian ini mengimplementasikan algoritma K-Nearest Neighbor dalam memprediksi penyakit liver yang diderita oleh pasien. Data yang digunakan adalah Indian Liver Patient Dataset (ILPD) yang diambil dari UCI Machine Learning Repository. Terdapat beberapa tahapan proses klasifikasi yang akan dilakukan, antara lain pemisahan data, membagi data uji dan data latih, permodelan KNN, kemudian dianalisa menggunakan confusion matrix dan juga accuracy score. Pada penelitian ini didapatkan hasil dari tingkat keakuratan data yaitu nilai akurasi, presisi, recall, dan juga f1-score dengan nilai akurasi sebesar 70%, presisi sebesar 66,5%, recall sebesar 59,5%, dan f1-score sebesar 59,5% dari nilai K = 7 yang paling tertinggi. Jadi algoritma K-Nearest Neighbor cukup akurat untuk mengklasifikasi data pasien penderita penyakit liver dikarenakan tingkat keakuratan data diatas 50%. Kata kunci: Klasifikasi; Penyakit Liver; K-Nearest Neighbor; Confusion Matrix