Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Data Mining Untuk Prediksi Stok Penjualan Keramik dengan Metode K-Means Dinata, Ferdian Arya; Nazir, Alwis; Fikry, Muhammad; Afrianty, Iis
Journal of Computer System and Informatics (JoSYC) Vol 5 No 3 (2024): May 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i3.5200

Abstract

Ceramics has become one goods that consumers show interest in every year, so many companies are interested in selling ceramics. However, ceramic sales must meet and balance changing customer needs as well as problems found regarding ceramic products and customers, such as a lack of stock of ceramic products which results in customers not placing orders and product sales not meeting targets. So it is necessary to group ceramics to anticipate the risks that the company will accept by utilizing the data mining process using past data. This research uses the K-Means method found in data mining. The objective of this research is to group determine sales of brands that have potential for additional stock in the future and to test the data using the DBI (Davies Bouldin Index) which is carried out by testing the distance values between clusters through a series of experiments. This research uses data for the last 1 year from January 2022 to December 2022 with a total of 156 data using 9 attributes, namely brand, item code (FT, WT) and size (40x40, 25x25, 50x50, 25x40, 60x60, 20x40). The results of the research using the K-Means method, the best-selling brand is cluster 2, the best-selling brand is cluster 1 and the best-selling brand is cluster 0. The best-selling brand is HRM, the best-selling brand is VALENSIA and the best-selling brand is MCC. Test results using the DBI method with a validity of 01.013 show that the best cluster is obtained at k=3 using the elbow method. It is hoped that this research will contribute to related companies as support for decision making.