Eriyadi, Maulidina Norick
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Object Detection of BISINDO Sign Language Letters Using Residual Network Eriyadi, Maulidina Norick; Ilyas, Ridwan; Abdillah, Gunawan; Hadiana, Asep Id
Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika Vol. 10 No. 1 (2024): April 2024
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/khif.v10i1.3670

Abstract

Indonesian Sign Language or BISINDO is an alternative language used by people who suffer from disabilities, especially those who have hearing impairments. This language grew and developed from the deaf community, so its use is based on the visual aspect. This research aims to apply Residual Networks to detect objects in the context of Bisindo Letter Sign Language, with the hope of increasing accuracy and efficiency in letter recognition. Object detection goes through 2 stages, namely feature extraction and model training. ResNet is a type of Convolutional Neural Network (CNN) architecture that utilizes models that have been previously trained, so it can save the time required in the model development process. In this research, Residual Network (ResNet) was used for feature extraction to recognize important aspects in the Bisindo letter sign image, such as hand position, finger shape characteristics, and direction of movement. The research results show that the new dataset used as training data and test data has a fairly good ability to detect with a division of 70% train set, 20% valid set and 10% test set with size 640x640 with 300 epochs for the training model.