Synthetic Minority Oversampling Technique-Nominal Continuous (SMOTE-NC) adalah metode oversampling yang digunakan untuk menangani ketidakseimbangan kelas pada data dengan kombinasi fitur numerik dan kategorikal. Teknik ini membuat data sintetis pada kelas minoritas dengan mempertimbangkan kedua jenis fitur tersebut agar distribusi data lebih seimbang. Algoritma K-Nearest Neighbor (K-NN) adalah algoritma klasifikasi yang bekerja dengan cara mencari sejumlah tetangga terdekat (berdasarkan jarak) dari data yang akan diprediksi dan menentukan kelasnya berdasarkan mayoritas kelas dari tetangga tersebut. Algoritma ini sederhana dan efektif untuk klasifikasi data. Penelitian ini membahas penerapan teknik oversampling SMOTE-NC pada algoritma K-NN untuk mengatasi ketidakseimbangan kelas pada data pasien gagal jantung. Data yang digunakan adalah Heart Failure Clinical Record dari Kaggle, yang mencakup 299 pasien dengan 11 atribut independen dan 1 atribut dependen. Setelah proses pre-processing, data dibagi menjadi data latih (70%) dan data uji (30%). SMOTE-NC diterapkan untuk meningkatkan jumlah data kelas minoritas (pasien meninggal) menjadi seimbang dengan kelas mayoritas (pasien selamat). Algoritma K-NN digunakan untuk klasifikasi dengan berbagai nilai parameter K. Evaluasi dilakukan menggunakan confusion matrix, dan difokuskan pada nilai sensitivitas sebagai ukuran kinerja model. Hasil penelitian menunjukkan bahwa nilai sensitivitas tertinggi yang diperoleh adalah sebesar 72,41%. Hal ini menunjukkan bahwa penerapan SMOTE-NC pada algoritma K-NN cukup efektif dalam meningkatkan kemampuan model dalam mendeteksi pasien yang meninggal akibat gagal jantung.