This Author published in this journals
All Journal JNANALOKA
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Literatur Reviu Sistematis: Identifikasi Jenis Ular Berbasis Computer Vision Putriany, Eva; Eva Putriany; Dhani Ariatmanto
JNANALOKA Vol. 05 No. 01 Maret Tahun 2024
Publisher : Lentera Dua Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36802/jnanaloka.2024.v5-no01-43-50

Abstract

Systematic Literature Review ini bertujuan untuk mengidentifikasi algoritma-algoritma yang digunakan dalam identifikasi spesies ular yang menggunakan computer vision, mengevaluasi dataset, tingkat akurasi, faktor-faktor yang memengaruhi akurasi, dan keterbatasan yang dihadapi. Melalui tinjauan literatur sistematis, 20 paper terpilih dari tahun 2019-2023, yang didapat dari berbagai sumber literatur. Penelitian-penelitian tersebut mengeksplorasi berbagai strategi untuk mengatasi tantangan pengenalan objek ular secara otomatis, termasuk peningkatan kinerja model, eksplorasi pendekatan baru, dan penerapan solusi efektif. Hasil dari studi literatur menyoroti pentingnya pemrosesan data yang cermat, pemilihan arsitektur model yang tepat, serta penyesuaian parameter algoritma yang optimal dalam mencapai kinerja maksimal pada model-model yang dikembangkan. Beberapa peneliti juga mengemukakan keterbatasan dalam penelitiannya, seperti kualitas dan jumlah dataset, kompleksitas morfologi ular, dan variasi pose ular. Diperlukan kerja sama lintas disiplin dan berbagi pengetahuan untuk mengatasi tantangan ini dan memajukan bidang identifikasi spesies ular melalui computer vision.