K, Mageshwaran
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

UNVEILING THE RELATIONSHIP BETWEEN M-POLYNOMIAL BASED TOPOLOGICAL INDICES AND INVERSE GRAPHS OF FINITE CYCLIC GROUPS: A COMPREHENSIVE STUDY K, Mageshwaran; S, Gopinath; R, Siluvaidasan
Journal of the Indonesian Mathematical Society Vol. 30 No. 3 (2024): NOVEMBER
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.30.3.1565.447-467

Abstract

In the discipline of graph theory, topological indices are extremely important. The M-polynomial is a powerful tool for determining a graph's topological indices. The use of M-polynomials to describe macro-molecules and biochemical networking is a novel concept. Also, the M-polynomial of various micro-structural allows us to calculate a variety of topological indices. The chemical substances and biochemical networks are correlated with their chemical characteristics and bio-active compounds using these findings. In this research, we use the M-polynomial to create special essential topological indices of inverse graphs on finite cyclic groups, such as Randic, Zagreb, Augmented Zagreb, Harmonic, Inverse sum, and Symmetric division degree indices.