Claim Missing Document
Check
Articles

Found 2 Documents
Search

Regional Grouping Based on Cubic Water Using K-Means Algorithm at Perumda Air Minum Tirta Silaupiasa Asahan Regency Munawar, Fajar; Nasution, Akmal; Santoso, Santoso
Sistemasi: Jurnal Sistem Informasi Vol 13, No 2 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i2.4027

Abstract

Perumda Air Minum Tirta Silaupiasa Asahan Regency is a regional company that has the authority to provide clean water consumption needs for the community in Asahan Regency. Currently, clean water needs, especially for households and industries in Asahan Regency, are supplied by Perumda Air Minum Tirta Silaupiasa which is located at Jalan Jend. Ahmad Yani No. 33, Kisaran, Sei Renggas, West Kisaran, Sei Renggas, West Kisaran City District, Asahan Regency, North Sumatra 21213. Currently, the need for clean water for the people of Asahan Regency comes from Perumda Air Minum Tirta Silaupiasa Asahan Regency. However, the amount of clean water provided for people living in areas with high cubic water in Asahan Regency is still relatively small, this is because the Perumda Air Minum Tirta Silaupiasa Asahan Regency does not know which areas have high, medium and low cubic water usage. Therefore, Perumda Air Minum Tirta Silaupiasa Asahan Regency needs to follow up on this problem by grouping areas based on water cubic. To manage the data, a technique is needed that can be used to extract information from the data, the technique is Data Mining. The purpose of this system is to find out how to analyze water cubic data using the K-Means Algorithm and design a website-based system with the PHP programming language and MySQL Database to determine areas with high, medium, and low water cubic. K-means clustering is a data analysis method or data mining method that performs unsupervised modeling and is one of the data clustering methods using a partition system. The data obtained in the recap of cubic water data at Perumda Air Minum Tirta Silaupiasa Asahan Regency for the period 2021-2023. The research method used in this research is quantitative research method. From the results of implementation and testing the results of the calculation of the K-means clustering method are the results of clustering cubic water in the Asahan district area with high water cubic including West Kisaran with a minimum value of 101727.9655 and East Kisaran with a minimum value of 101727.9655. Then in the Asahan district area with medium water cubic including Air Joman with a minimum value of 151144.2025 and Simpang Empat with a minimum value of 151144.2025. Then in the Asahan district area with low water cubic including B.P Mandoge with a minimum value of 66801.4373, Buntu Pane with a minimum value of 105608.8293, Desa Gajah with a value of 59925.2623, Lubuk Palas with a value of 75832.9197, Meranti with a value of 2892.8137, Sei Kamah II with a value of 47997.2206, and Sei Kepayang Barat with a value of 197781.2457.
KLASTERISASI DAERAH PESERTA KB AKTIF DI KABUPATEN ASAHAN MENGGUNAKAN METODE K-MEANS Munawar, Fajar; Utami, Aftari Swastika Dyah; Manurung, Sari Bunga Tiara
J-Com (Journal of Computer) Vol. 4 No. 1 (2024): Maret 2024
Publisher : STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/j-com.v4i1.3047

Abstract

Abstract: Active Family Planning (FP) participants are one of the indicators of the success of the FP program. This study aims to cluster the level of activity of active FP participants in Asahan Regency using the K-Means method. The data used is data on active FP participants in Asahan Regency in 2021. The results of the study showed that there are three groups of active FP participants based on their level of activity, namely the group with a low level of activity, the group with a medium level of activity, and the group with a high level of activity. The group with a low level of activity consists of 7 districts, namely B.P Mandoge, Pulau Rakyat, Tanjung Balai, Air Batu, Sei Dadap, Pulo Bandring, and Kisaran Barat. The impact of low active FP participants in a district is an increase in the number of unwanted births, an increase in the number of maternal and child deaths, and an increase in population density. The group with a medium level of activity consists of 15 districts, namely Bandar Pulau, Aek Songsongan, Rahuning, Aek Kuasan, Aek Ledong, S. Kepayang, S. Kepayang Barat, S. Kepayang Timur, Teluk Dalam, Buntu Pane, Tinggi Raja, Setia Janji, Meranti, R. Panca Arga, and Silau Laut. The group with a high level of activity consists of 3 districts, namely Simpang Empat, Air Joman, and Kisaran Timur. The impact of the high number of active FP participants in a district is an increase in maternal and child health, an increase in family economy, and an increase in family welfare. The results of this clustering analysis can be used by the National Population and Family Planning Agency (BKKBN) of Asahan Regency to improve public understanding of the importance of birth control. This can be done through socialization throughout the regency, especially in districts where the results of the analysis show that the number of active FP participants is quite large. Keywords: Family Planning, K-Means, ClusterAbstrak: Peserta Keluarga Berencana (KB) aktif merupakan salah satu indikator keberhasilan program KB. Penelitian ini bertujuan untuk melakukan klasterisasi tingkat keaktifan peserta KB aktif di Kabupaten Asahan menggunakan metode K-Means. Data yang digunakan adalah data peserta KB aktif di Kabupaten Asahan tahun 2021. Hasil penelitian menunjukkan bahwa terdapat tiga kelompok peserta KB aktif berdasarkan tingkat keaktifannya, yaitu kelompok dengan tingkat keaktifan rendah, kelompok dengan tingkat keaktifan sedang, dan kelompok dengan tingkat keaktifan tinggi. Kelompok dengan tingkat keaktifan rendah terdiri dari 7 Kecamatan, yaitu B.P Mandoge, Pulau Rakyat, Tanjung Balai, Air Batu, Sei Dadap, Pulo Bandring, dan Kisaran Barat. Dampak dari rendahnya peserta aktif KB di suatu Kecamatan yaitu meningkatnya angka kelahiran tidak diinginkan, meningkatnya angka kematian ibu dan bayi, dan meningkatnya kepadatan penduduk. Kelompok dengan tingkat keaktifan sedang terdiri dari 15 Kecamatan, yaitu Bandar Pulau, Aek Songsongan, Rahuning, Aek Kuasan, Aek Ledong, S. Kepayang, S. Kepayang Barat, S. Kepayang Timur, Teluk Dalam, Buntu Pane, Tinggi Raja, Setia Janji, Meranti, R. Panca Arga, dan Silau Laut. Kelompok dengan tingkat keaktifan tinggi terdiri dari 3 Kecamatan, yaitu Simpang Empat, Air Joman, dan Kisaran Timur. Dampak dari tingginya peserta aktif KB di suatu Kecamatan yaitu meningkatnya kesehatan ibu dan anak, meningkatnya ekonomi keluarga, dan meningkatnya kesejahteraan keluarga. Hasil analisis klasterisasi ini dapat dimanfaatkan oleh Badan Kependudukan dan Keluarga Berencana Nasional (BKKBN) Kabupaten Asahan untuk meningkatkan pemahaman masyarakat tentang pentingnya pengendalian kelahiran. Hal ini dapat dilakukan melalui sosialisasi di seluruh wilayah kabupaten, khususnya di kecamatan-kecamatan yang hasil analisisnya menunjukkan jumlah peserta KB aktif cukup banyak.Kata kunci: Keluarga Berencana, K-Means, KlasterĀ