This study aims to compare the performance of the Dijkstra algorithm and the Genetics algorithm in determining the shortest path to the Guci tourist destination. The research design combines experimental methods, quantitative analysis, and model validation. The data used is the distance between points on two alternative routes to Guci. Data pre-processing is done to ensure quality and consistency. The relevant variables are selected, and model optimization is performed to obtain the best parameter configuration for both algorithms. Dijkstra and Genetics algorithms are implemented using Python, taking into account computational efficiency and ease of integration. Model evaluation is done through a series of tests with time execution and convergence metrics. The results showed that Dijkstra's algorithm was superior in finding the shortest path with a distance of 43.0 km and an execution time of 0.0017 seconds, compared to the Genetics algorithm which found a path with a distance of 44.7 km and an execution time of 0.0048 seconds. It can be concluded that Dijkstra's algorithm is more effective and efficient in this case, but Genetics algorithms have the potential for more complex optimization problems.