Mushofy Anwary, Azy
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

ANALISIS SENTIMENT PENGGUNAAN VAKSIN COVID-19 MENGGUNAKAN GEO-TAGGED TWEETS DAN ALGORITMA NAIVE BAYES Mushofy Anwary, Azy; ID Hadiana, Asep; Nurul Sabrina, Puspita
Informatics and Digital Expert (INDEX) Vol. 3 No. 2 (2021): INDEX, November 2021
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v3i2.876

Abstract

Sentimen analisis adalah salah satu teknik yang dapat dilakukan untuk mengolah suatu opini dari masyarakat salah satunya pada media sosial yaitu twitter. Dengan sentiment analisis data twitter tersebut dapat diketahui apakah polaritas suatu data tersebut akan mengarah pada sifat positif, negatif, atau netral. Penelitian ini menggunakan topik vaksin Covid-19 yang didapat dari Twitter. Metode yang digunakan dalam penelitian ini adalah metode naïve bayes. Metode naïve bayes adalah metode yang sering digunakan dalam mengkategorikan teks dan sangat cocok digunakan untuk implementasi analisis sentiment. Pada penelitian ini juga terdapat fitur tambahan yaitu fitur Geo-Tagged, fitur ini berguna untuk mengambil data pengguna twitter agar mengetahui lokasi dan waktu pengguna pada saat melakukan tweet. Ada beberapa proses yang dilakukan pada penelitian ini diantaranya pengumpulan data, pelabelan data, preprocessing data, feature extraction, penyeimbangan kelas label, mengklasifikasikan data menggunakan metode naïve bayes, melakukan visualisasi data berupa maps dan yang terakhir yaitu evaluasi hasil. Penelitian ini menghasilkan nilai akurasi (79%) dengan dibantu oleh metode synthetic minority oversampling technique. Data yang digunakan sebesar 1132 dataset yang diambil langsung menggunakan Teknik crawling dengan liblary twint. Wilayah yang melakukan tweet terbanyak jatuh kepada wilayah Karawang dengan sentimen positif  70 tweet, sentimen negatif 12 tweet dan sentimen netral 13 tweet.