Helmi Bahar Alim
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Data Mining Untuk Prediksi Jumlah Kunjungan Wisatawan di Kebumen Menggunakan Metode Regresi Linier Sederhana Ikhsanuddin, Rohmatulloh Muhamad; Bahar Alim, Helmi; Shona Chayy Bilqisth, Shona Chayy Bilqisth
Technology and Informatics Insight Journal Vol. 4 No. 1 (2025): TIIJ
Publisher : LP3M Universitas Putra Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32639/6ace8h37

Abstract

Kebumen memiliki potensi wisata alam di pantai selatan Jawa Tengah sebagai alternatif berwisata dengan unggulan destinasi pantai seperti Pantai Menganti, Pantai Karang Bolong, Goa Jatijajar dan Waduk Sempor. Pariwisata memiliki peranan dalam peningkatan pendapatan daerah sehingga perlu didukung pemerintah melalui investasi penunjang pariwisata. Prediksi jumlah wisatawan di Kebumen sebagai faktor yang mempengaruhi investor dalam membuka usaha tentunya diperlukan dalam pengambilan keputusan. Berdasarkan data BPS jumlah kunjungan di Kebumen pada Oktober 2024 sebanyak 257.745 sehingga diharapkan prediksi jumlah kunjungan wisatawan tahun berikutnya dapat menjadikan minat investor di Kebumen. Hasil perhitungan menunjukan bahwa metode regresi linier menghasilkan akurasi sebesar 94,60% dapat membantu pemerintah untuk meyakinkan investor pendukung pariwisata di Kebumen.
AI-Integrated Public Digital Infrastructure for Geopark Tourism: Empowering MSMEs through Smart Mobility and Data-Driven Governance Helmi Bahar Alim
Journal of Informatics Management and Information Technology Vol. 5 No. 4 (2025): October 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/jimat.v5i4.786

Abstract

This study develops an integrated digital platform architecture as a systemic response to two structural challenges in the Kebumen Geopark: the economic exclusion of Micro, Small, and Medium Enterprises (MSMEs) from the digital tourism value chain, and the fragmentation of mobility services that reduce operational efficiency and visitor experience. Using a conceptual design methodology grounded in Critical Interpretive Synthesis (CIS), Comparative Policy Analysis (CPA), and contextual needs mapping, the study identifies three critical interdependencies between MSME empowerment, smart mobility, and parking management. These interdependencies form the basis of a validated integration architecture that, based on simulation and expert review, reduces average visitor wait times by 18% and increases MSME digital participation by 27%. The platform integrates modular components for MSME visibility, mobility optimization, and participatory governance through data-driven decision support. Validity was established through expert interviews (N=15) involving digital tourism practitioners, policymakers, and system designers, complemented by comparative analysis with five leading global smart tourism models (Jeju, Smart Santander, Magelang, Banyuwangi, and Yogyakarta). Theoretically, this research advances the Smart Tourism Ecosystem framework by embedding civic-oriented governance and data sovereignty into the system design. Practically, it delivers a replicable Public Digital Infrastructure (PDI) blueprint for inclusive and sustainable tourism governance in geoparks and similar non-urban destinations.