This Author published in this journals
All Journal JURTEKSI
Tandiano, Andreas Halim
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

CLASSIFICATION OF FAKE NEWS IN INDONESIAN LANGUAGE USING SUPPORT VECTOR MACHINE METHOD Tandiano, Andreas Halim; Jollyta, Deny
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 10 No. 2 (2024): Maret 2024
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v10i2.2895

Abstract

Abstract: Since information and communication technology has become ingrained in our daily lives, it has become easier to access information. However, there are some concerns. One of them is about fake news. The aim of this study is to develop an Indonesian system for detecting false news by utilizing news headlines. The methods used are linear kernel support vector ma- chine and n-gram. According to the findings of the performance test that was carried out, the linear kernel support vector machine model employing the term frequency inverse document frequency unigram feature performs better than utilizing bigram. The precision value generated from the model performance test is 1.00. This means that the degree of accuracy in matching the requested information regarding fake news detection with the answers provided by the system is very good. Then the recall value generated is 0.99. This means the linear kernel support vector machine model using unigram news features is very effective for detecting fake news according to the text classification approach.            Keywords: classification; fake news; n-gram; support vector machine Abstrak: Dengan adanya integrasi teknologi informasi dan komunikasi dalam kehidupan mem- buat kemudahan dalam mengakses informasi. Walaupun demikian, terdapat kekhawatiran akan beberapa hal. Salah satu di antaranya adalah berita palsu. Tujuan penelitian ini adalah merancang sistem deteksi berita palsu berbahasa Indonesia berdasarkan judul berita. Metode yang digunakan adalah Support Vector Machine kernel linier dan n-gram. Berdasarkan hasil uji performa, model Support Vector Machine kernel linier yang menggunakan fitur term frequency inverse document frequency unigram menunjukkan kinerja yang lebih baik dibandingkan bi- gram. Nilai precision yang dihasilkan dari uji performa model sebesar 1,00. Ini berarti derajat akurasi dalam mencocokkan informasi yang diminta mengenai deteksi berita palsu dengan ja- waban yang diberikan oleh sistem sangat baik. Kemudian nilai recall yang dihasilkan sebesar 0,99. Ini berarti model Support Vector Machine kernel linier dengan menggunakan fitur berita unigram sangat efektif untuk mendeteksi berita palsu menurut pendekatan teks klasifikasi. Kata kunci: klasifikasi; berita palsu; n-gram; support vector machine