Goyal, S.B.
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Dark Web Financial Fraud Identification Using Mathematical Models in Healthcare Domain Rajawat, Anand Singh; Goyal, S.B.; Solanki, Ram Kumar; Gadekar, Amit; Patil, Dipak
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.2600

Abstract

The so-called "dark web" has emerged as the most trustworthy platform for thieves to launch their enterprises. The healthcare industry has become a haven for illegal activities such as the sale of medical gadgets, trafficking in human beings, and the purchase of organs. This is because the sector provides a high level of privacy, which makes it an ideal location for engaging in unlawful operations. In this field of research, linear regression is utilized to uncover previously unknown patterns in customer demand. A vector will be created using a time series of medical equipment purchases to do this. When we look at the data the case firm gave us, we notice that people tend to desire to purchase products in one of three ways. After that, we sort the hospitals into groups according to the course of the trend vector by employing a technique known as "hierarchical clustering," which we apply to the data. According to the research findings, the trend-based clustering method is an excellent way to partition hospitals into subgroups that share similar tendencies. According to our model evaluations, no one model can reliably produce the most accurate forecasts for each cluster when used by itself. Some models can be utilized to make accurate predictions, and these models apply to a wide variety of time series that exhibit various patterns.