Academic stress is one of the common problems issues by university students due to heavy with heavy workloads, grade pressure, and various academic This condition can have a negatively impact on mental health, productivity and overall academic performance. In the long term, unmaged stress may lead serious psychological disorders. Therefore, it is important to accurately identify and classify the levels of academic stress. This study aims to cluster students’ academic stress levels by utilizing the K-Medoids algorithm. The data analyzed in the research were collected through questionnaires that were filled out by 507 students from the 2021-2023 cohorts, based on a modified version of the Perception of Academic Stress Scale (PASS). The results show that the K-medoids algorithm successfully clustered the data in 2 groups: cluster 0, which represents a moderate stress level with 212 students, and cluster 1, which indicates a high stress level with 295 students. This high-stress cluster exhibited higher average cores on questions 12 and 13 (score 3-5), which fall under the favorable category and are suspected to be the main triggers of academic stress among students in this group. Based on two evalutation metrics-Silhouette Coeficient and Davies-Bouldin Index (DBI)-it can be concluded that the optimal number of clusters for this data set is K=2. However, the clustering separation was not optimal due to he variation in study programs and the uneven distribution of respondets across academic years. This research is expected to provide direction the development intervation policies and strategies to support student welfare.